Effect of polyelectrolytes and polyelectrolyte mixtures on the electrokinetic potential of dispersed particles. 1. Electrokinetic potential of polystyrene particles in solutions of surfactants, polyelectrolytes and their mixtures

S. Bárány, Jiri Skvarla

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The effect of cationic and anionic surfactants, as well as cationic and anionic polyelectrolytes (PE), their binary mixtures on the electrokinetic potential of monodisperse carboxylated polystyrene (PS) particles as a function of the reagents dose, pH, the charge density (CD) of polymers, the surfactant/PE and binary PE mixture composition, and sequence of components addition to the suspension has been studied. It has been shown that addition of increasing amount of anionic surfactant/polyelectrolytes increases the absolute value of the negative zeta-potential of PS particles; this increase is stronger the CD of the PE and pH of the system are higher. Adsorption of cationic surfactant/polyelectrolytes leads to a significant decrease in the negative ζ-potential and to overcharging the particles; changes in the ζ-potential are more pronounced for PE samples with higher CD and for suspensions with lower pH values. In mixtures of cationic and anionic PE, in a wide range of mixture composition, the ζ-potential of particles is determined by the adsorbed amount of the anionic polymer independently of the CD of PEs and the sequence of addition of the mixture components. The isoelectric point of the surface is reached at the adsorbed amount of positive charges of PE that is approximately equal to the surface CD of particles. The laws observed were explained by features of macromolecules conformation in adsorbed mixed PE layers. Considerations about the role of coulombic and non-coulombic forces in the mechanism of anionic/cationic PE adsorption are presented.

Original languageEnglish
Pages (from-to)129-136
Number of pages8
JournalColloid Journal
Volume75
Issue number2
DOIs
Publication statusPublished - Apr 2013

Fingerprint

Polystyrenes
electrokinetics
Polyelectrolytes
Surface-Active Agents
polystyrene
Surface active agents
surfactants
Charge density
binary mixtures
adsorption
Anionic surfactants
Cationic surfactants
polymers
macromolecules
reagents
Suspensions
Polymers
Adsorption
dosage
Zeta potential

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Colloid and Surface Chemistry
  • Surfaces and Interfaces

Cite this

@article{c694eeeae1114a7e8bde4273bceceb75,
title = "Effect of polyelectrolytes and polyelectrolyte mixtures on the electrokinetic potential of dispersed particles. 1. Electrokinetic potential of polystyrene particles in solutions of surfactants, polyelectrolytes and their mixtures",
abstract = "The effect of cationic and anionic surfactants, as well as cationic and anionic polyelectrolytes (PE), their binary mixtures on the electrokinetic potential of monodisperse carboxylated polystyrene (PS) particles as a function of the reagents dose, pH, the charge density (CD) of polymers, the surfactant/PE and binary PE mixture composition, and sequence of components addition to the suspension has been studied. It has been shown that addition of increasing amount of anionic surfactant/polyelectrolytes increases the absolute value of the negative zeta-potential of PS particles; this increase is stronger the CD of the PE and pH of the system are higher. Adsorption of cationic surfactant/polyelectrolytes leads to a significant decrease in the negative ζ-potential and to overcharging the particles; changes in the ζ-potential are more pronounced for PE samples with higher CD and for suspensions with lower pH values. In mixtures of cationic and anionic PE, in a wide range of mixture composition, the ζ-potential of particles is determined by the adsorbed amount of the anionic polymer independently of the CD of PEs and the sequence of addition of the mixture components. The isoelectric point of the surface is reached at the adsorbed amount of positive charges of PE that is approximately equal to the surface CD of particles. The laws observed were explained by features of macromolecules conformation in adsorbed mixed PE layers. Considerations about the role of coulombic and non-coulombic forces in the mechanism of anionic/cationic PE adsorption are presented.",
author = "S. B{\'a}r{\'a}ny and Jiri Skvarla",
year = "2013",
month = "4",
doi = "10.1134/S1061933X13020038",
language = "English",
volume = "75",
pages = "129--136",
journal = "Colloid Journal of the Russian Academy of Sciences: Kolloidnyi Zhurnal",
issn = "1061-933X",
publisher = "Maik Nauka-Interperiodica Publishing",
number = "2",

}

TY - JOUR

T1 - Effect of polyelectrolytes and polyelectrolyte mixtures on the electrokinetic potential of dispersed particles. 1. Electrokinetic potential of polystyrene particles in solutions of surfactants, polyelectrolytes and their mixtures

AU - Bárány, S.

AU - Skvarla, Jiri

PY - 2013/4

Y1 - 2013/4

N2 - The effect of cationic and anionic surfactants, as well as cationic and anionic polyelectrolytes (PE), their binary mixtures on the electrokinetic potential of monodisperse carboxylated polystyrene (PS) particles as a function of the reagents dose, pH, the charge density (CD) of polymers, the surfactant/PE and binary PE mixture composition, and sequence of components addition to the suspension has been studied. It has been shown that addition of increasing amount of anionic surfactant/polyelectrolytes increases the absolute value of the negative zeta-potential of PS particles; this increase is stronger the CD of the PE and pH of the system are higher. Adsorption of cationic surfactant/polyelectrolytes leads to a significant decrease in the negative ζ-potential and to overcharging the particles; changes in the ζ-potential are more pronounced for PE samples with higher CD and for suspensions with lower pH values. In mixtures of cationic and anionic PE, in a wide range of mixture composition, the ζ-potential of particles is determined by the adsorbed amount of the anionic polymer independently of the CD of PEs and the sequence of addition of the mixture components. The isoelectric point of the surface is reached at the adsorbed amount of positive charges of PE that is approximately equal to the surface CD of particles. The laws observed were explained by features of macromolecules conformation in adsorbed mixed PE layers. Considerations about the role of coulombic and non-coulombic forces in the mechanism of anionic/cationic PE adsorption are presented.

AB - The effect of cationic and anionic surfactants, as well as cationic and anionic polyelectrolytes (PE), their binary mixtures on the electrokinetic potential of monodisperse carboxylated polystyrene (PS) particles as a function of the reagents dose, pH, the charge density (CD) of polymers, the surfactant/PE and binary PE mixture composition, and sequence of components addition to the suspension has been studied. It has been shown that addition of increasing amount of anionic surfactant/polyelectrolytes increases the absolute value of the negative zeta-potential of PS particles; this increase is stronger the CD of the PE and pH of the system are higher. Adsorption of cationic surfactant/polyelectrolytes leads to a significant decrease in the negative ζ-potential and to overcharging the particles; changes in the ζ-potential are more pronounced for PE samples with higher CD and for suspensions with lower pH values. In mixtures of cationic and anionic PE, in a wide range of mixture composition, the ζ-potential of particles is determined by the adsorbed amount of the anionic polymer independently of the CD of PEs and the sequence of addition of the mixture components. The isoelectric point of the surface is reached at the adsorbed amount of positive charges of PE that is approximately equal to the surface CD of particles. The laws observed were explained by features of macromolecules conformation in adsorbed mixed PE layers. Considerations about the role of coulombic and non-coulombic forces in the mechanism of anionic/cationic PE adsorption are presented.

UR - http://www.scopus.com/inward/record.url?scp=84885655655&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84885655655&partnerID=8YFLogxK

U2 - 10.1134/S1061933X13020038

DO - 10.1134/S1061933X13020038

M3 - Article

VL - 75

SP - 129

EP - 136

JO - Colloid Journal of the Russian Academy of Sciences: Kolloidnyi Zhurnal

JF - Colloid Journal of the Russian Academy of Sciences: Kolloidnyi Zhurnal

SN - 1061-933X

IS - 2

ER -