Effect of graft density on the nonionic bottle brush polymer/surfactant interaction

Imre Varga, Robert Mészáros, Ricardas Makuška, Per M. Claesson, Tibor Gilányi

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

The effect of graft density on the interaction of nonionic bottle brush polymers with an anionic surfactant (sodium dodecyl sulfate) was investigated. The graft density of 45 units long poly(ethylene oxide) (PEO) side chains was varied in a wide range (30, 50, 75, 90, and 100%) on a methacrylate type polymer backbone. The surfactant binding isotherms were determined by the potentiometric method in the presence of 0.1 M sodium bromide. It was found that due to the grafting of the PEO chains to a polymer backbone the surfactant binding becomes significantly suppressed. The amount of bound surfactant at the critical micelle concentration (cmc) decreases almost 2 orders of magnitude compared to the binding on a linear PEO having a similar molecular weight. The binding of the surfactant was found to occur in cooperative fashion, though the critical aggregation concentration (cac) of the binding was found surprisingly small. This result was interpreted in terms of the surfactant aggregation numbers that were found much smaller in the case of the bottle brush polymers than in the case of linear PEOs due to the steric crowding of the grafted PEO chains. To confirm the results of the binding isotherm measurements, steady-state fluorescence probe (pyrene) measurements as well as static and dynamic light scattering measurements were performed.

Original languageEnglish
Pages (from-to)11383-11389
Number of pages7
JournalLangmuir
Volume25
Issue number19
DOIs
Publication statusPublished - Oct 6 2009

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Effect of graft density on the nonionic bottle brush polymer/surfactant interaction'. Together they form a unique fingerprint.

  • Cite this