Edge list multicoloring trees: An extension of Hall's theorem

Mathew Cropper, A. Gyárfás, Jenö Lehel

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We prove a necessary and sufficient condition for the existence of edge list multicoloring of trees. The result extends the Halmos-Vaughan generalization of Hall's theorem on the existence of distinct representatives of sets.

Original languageEnglish
Pages (from-to)246-255
Number of pages10
JournalJournal of Graph Theory
Volume42
Issue number3
DOIs
Publication statusPublished - Mar 2003

Fingerprint

Theorem
Distinct
Necessary Conditions
Sufficient Conditions
Generalization

Keywords

  • Edge and vertex of multicolorings
  • Hall's theorem
  • List-coloring of graphs
  • Transversal (matching) theory
  • Trees

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Edge list multicoloring trees : An extension of Hall's theorem. / Cropper, Mathew; Gyárfás, A.; Lehel, Jenö.

In: Journal of Graph Theory, Vol. 42, No. 3, 03.2003, p. 246-255.

Research output: Contribution to journalArticle

Cropper, Mathew ; Gyárfás, A. ; Lehel, Jenö. / Edge list multicoloring trees : An extension of Hall's theorem. In: Journal of Graph Theory. 2003 ; Vol. 42, No. 3. pp. 246-255.
@article{0ad6ddaf57ce460eb9abe973fd237403,
title = "Edge list multicoloring trees: An extension of Hall's theorem",
abstract = "We prove a necessary and sufficient condition for the existence of edge list multicoloring of trees. The result extends the Halmos-Vaughan generalization of Hall's theorem on the existence of distinct representatives of sets.",
keywords = "Edge and vertex of multicolorings, Hall's theorem, List-coloring of graphs, Transversal (matching) theory, Trees",
author = "Mathew Cropper and A. Gy{\'a}rf{\'a}s and Jen{\"o} Lehel",
year = "2003",
month = "3",
doi = "10.1002/jgt.10093",
language = "English",
volume = "42",
pages = "246--255",
journal = "Journal of Graph Theory",
issn = "0364-9024",
publisher = "Wiley-Liss Inc.",
number = "3",

}

TY - JOUR

T1 - Edge list multicoloring trees

T2 - An extension of Hall's theorem

AU - Cropper, Mathew

AU - Gyárfás, A.

AU - Lehel, Jenö

PY - 2003/3

Y1 - 2003/3

N2 - We prove a necessary and sufficient condition for the existence of edge list multicoloring of trees. The result extends the Halmos-Vaughan generalization of Hall's theorem on the existence of distinct representatives of sets.

AB - We prove a necessary and sufficient condition for the existence of edge list multicoloring of trees. The result extends the Halmos-Vaughan generalization of Hall's theorem on the existence of distinct representatives of sets.

KW - Edge and vertex of multicolorings

KW - Hall's theorem

KW - List-coloring of graphs

KW - Transversal (matching) theory

KW - Trees

UR - http://www.scopus.com/inward/record.url?scp=0037340301&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037340301&partnerID=8YFLogxK

U2 - 10.1002/jgt.10093

DO - 10.1002/jgt.10093

M3 - Article

AN - SCOPUS:0037340301

VL - 42

SP - 246

EP - 255

JO - Journal of Graph Theory

JF - Journal of Graph Theory

SN - 0364-9024

IS - 3

ER -