Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe)

Eruption chronology, correlation potential and geodynamic implications

Réka Lukács, S. Harangi, Marcel Guillong, Olivier Bachmann, L. Fodor, Yannick Buret, István Dunkl, Jakub Sliwinski, Albrecht von Quadt, Irena Peytcheva, Matthew Zimmerer

Research output: Contribution to journalReview article

10 Citations (Scopus)

Abstract

Formation and evolution of the Pannonian Basin as part of the Mediterranean region was accompanied by eruptions of compositionally diverse magmas during the Neogene to Quaternary. The long-lasting magmatic activity began with some of the most voluminous silicic eruptions in Europe for the last 20 Myr. This paper describes the eruption chronology of this volcanic activity using new, high-quality zircon U-Pb dates, and provides the first estimates on the volume and areal distribution of the volcanic products, characterizes the magma composition and discusses the silicic magmatism in a region, where the continental lithosphere underwent significant extension. A thorough zircon geochronological study was conducted on samples collected from ignimbrites and pyroclastic fall deposits exposed in the Bükkalja Volcanic Field. In-situ LA-ICP-MS analysis on zircon grains provided a fast, cheap and accurate method for such detailed geochronological work, where the volcanic products occur in scattered outcrops that often have poor stratigraphic constraints. The interpreted eruption ages were determined from the youngest zircon age population within the samples and this methodology was validated by new single zircon CA-ID-TIMS dates and sanidine Ar-Ar ages. The volcanism covers about 4 Myrs, from 18.2 Ma to 14.4 Ma and involved at least eight eruptive phases. Within this, four large eruption events were recognized at 14.358 ± 0.015 Ma (Harsány ignimbrite), 14.880 ± 0.014 Ma (Demjén ignimbrite), 16.816 ± 0.059 Ma (Bogács unit) and 17.055 ± 0.024 Ma (Mangó ignimbrite), which are found in areas across the Pannonian Basin and elsewhere in central Europe. Considering all the potential sources of silicic ash found in the Paratethys sub-basins around the Pannonian Basin and along the northern Alps and in central Italy, we suggest that they were probably derived almost exclusively from the Pannonian Basin as shown by zircon U-Pb dates presented in this paper and published comparable age data from several localities. The new eruption ages considerably refine the Early to Mid-Miocene chronostratigraphy of the Pannonian basin, where the extensive volcanoclastic horizons are used as important marker layers. The cumulative volume of the volcanic material formed during this 4 Myr long silicic volcanism is estimated to be >4000 km3, consistent with a significant ignimbrite flare-up event. Zircon crystallization ages indicate magma intrusions and formations of magma reservoirs in the continental crust for prolonged period, likely >1 Myr prior to the onset of the silicic volcanism accompanied with sporadic andesitic to dacitic volcanic activities. Mafic magmas were formed by melting of the thinned lithospheric mantle metasomatized previously by subduction-related fluids and emplaced at the crust-mantle boundary. They evolved further by assimilation and fractional crystallization to generate silicic magmas, which ascended into the pre-warmed upper crust and formed extended magma storage regions. Zircon Hf isotope and bulk rock Sr-Nd isotopic data indicate a sharp decrease of crustal and/or increase of asthenospheric mantle input after 16.2 Ma, suggesting that by this time the crust, and the lithospheric mantle was considerably thinned. This magmatism appears to have had a structural relationship to tectonic movements characterized by strike-slip and normal faults within the Mid-Hungarian Shear Zone as well as vertical axis block rotations, when the two microplates were juxtaposed. Our new zircon ages helped to refine the age of two major block-rotation phases associated with faulting. This volcanism shows many similarities with other rift-related silicic volcanic activities such as the Taupo Volcanic Zone (New Zealand) and the Basin and Range Province (USA).

Original languageEnglish
Pages (from-to)1-19
Number of pages19
JournalEarth-Science Reviews
Volume179
DOIs
Publication statusPublished - Apr 1 2018

Fingerprint

geodynamics
chronology
volcanism
zircon
volcanic eruption
Miocene
ignimbrite
basin
block rotation
magma
mantle
magmatism
Europe
crust-mantle boundary
Paratethys
chronostratigraphy
sanidine
microplate
continental lithosphere
fractional crystallization

Keywords

  • Bükkalja Volcanic Field
  • Eruption chronology
  • Pannonian Basin
  • Paratethys
  • Silicic ignimbrite
  • syn-extensional volcanism
  • Zircon ages

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)

Cite this

Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe) : Eruption chronology, correlation potential and geodynamic implications. / Lukács, Réka; Harangi, S.; Guillong, Marcel; Bachmann, Olivier; Fodor, L.; Buret, Yannick; Dunkl, István; Sliwinski, Jakub; von Quadt, Albrecht; Peytcheva, Irena; Zimmerer, Matthew.

In: Earth-Science Reviews, Vol. 179, 01.04.2018, p. 1-19.

Research output: Contribution to journalReview article

Lukács, Réka ; Harangi, S. ; Guillong, Marcel ; Bachmann, Olivier ; Fodor, L. ; Buret, Yannick ; Dunkl, István ; Sliwinski, Jakub ; von Quadt, Albrecht ; Peytcheva, Irena ; Zimmerer, Matthew. / Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe) : Eruption chronology, correlation potential and geodynamic implications. In: Earth-Science Reviews. 2018 ; Vol. 179. pp. 1-19.
@article{f5fcfd5da2084455b8754258c2e5e98c,
title = "Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): Eruption chronology, correlation potential and geodynamic implications",
abstract = "Formation and evolution of the Pannonian Basin as part of the Mediterranean region was accompanied by eruptions of compositionally diverse magmas during the Neogene to Quaternary. The long-lasting magmatic activity began with some of the most voluminous silicic eruptions in Europe for the last 20 Myr. This paper describes the eruption chronology of this volcanic activity using new, high-quality zircon U-Pb dates, and provides the first estimates on the volume and areal distribution of the volcanic products, characterizes the magma composition and discusses the silicic magmatism in a region, where the continental lithosphere underwent significant extension. A thorough zircon geochronological study was conducted on samples collected from ignimbrites and pyroclastic fall deposits exposed in the B{\"u}kkalja Volcanic Field. In-situ LA-ICP-MS analysis on zircon grains provided a fast, cheap and accurate method for such detailed geochronological work, where the volcanic products occur in scattered outcrops that often have poor stratigraphic constraints. The interpreted eruption ages were determined from the youngest zircon age population within the samples and this methodology was validated by new single zircon CA-ID-TIMS dates and sanidine Ar-Ar ages. The volcanism covers about 4 Myrs, from 18.2 Ma to 14.4 Ma and involved at least eight eruptive phases. Within this, four large eruption events were recognized at 14.358 ± 0.015 Ma (Hars{\'a}ny ignimbrite), 14.880 ± 0.014 Ma (Demj{\'e}n ignimbrite), 16.816 ± 0.059 Ma (Bog{\'a}cs unit) and 17.055 ± 0.024 Ma (Mang{\'o} ignimbrite), which are found in areas across the Pannonian Basin and elsewhere in central Europe. Considering all the potential sources of silicic ash found in the Paratethys sub-basins around the Pannonian Basin and along the northern Alps and in central Italy, we suggest that they were probably derived almost exclusively from the Pannonian Basin as shown by zircon U-Pb dates presented in this paper and published comparable age data from several localities. The new eruption ages considerably refine the Early to Mid-Miocene chronostratigraphy of the Pannonian basin, where the extensive volcanoclastic horizons are used as important marker layers. The cumulative volume of the volcanic material formed during this 4 Myr long silicic volcanism is estimated to be >4000 km3, consistent with a significant ignimbrite flare-up event. Zircon crystallization ages indicate magma intrusions and formations of magma reservoirs in the continental crust for prolonged period, likely >1 Myr prior to the onset of the silicic volcanism accompanied with sporadic andesitic to dacitic volcanic activities. Mafic magmas were formed by melting of the thinned lithospheric mantle metasomatized previously by subduction-related fluids and emplaced at the crust-mantle boundary. They evolved further by assimilation and fractional crystallization to generate silicic magmas, which ascended into the pre-warmed upper crust and formed extended magma storage regions. Zircon Hf isotope and bulk rock Sr-Nd isotopic data indicate a sharp decrease of crustal and/or increase of asthenospheric mantle input after 16.2 Ma, suggesting that by this time the crust, and the lithospheric mantle was considerably thinned. This magmatism appears to have had a structural relationship to tectonic movements characterized by strike-slip and normal faults within the Mid-Hungarian Shear Zone as well as vertical axis block rotations, when the two microplates were juxtaposed. Our new zircon ages helped to refine the age of two major block-rotation phases associated with faulting. This volcanism shows many similarities with other rift-related silicic volcanic activities such as the Taupo Volcanic Zone (New Zealand) and the Basin and Range Province (USA).",
keywords = "B{\"u}kkalja Volcanic Field, Eruption chronology, Pannonian Basin, Paratethys, Silicic ignimbrite, syn-extensional volcanism, Zircon ages",
author = "R{\'e}ka Luk{\'a}cs and S. Harangi and Marcel Guillong and Olivier Bachmann and L. Fodor and Yannick Buret and Istv{\'a}n Dunkl and Jakub Sliwinski and {von Quadt}, Albrecht and Irena Peytcheva and Matthew Zimmerer",
year = "2018",
month = "4",
day = "1",
doi = "10.1016/j.earscirev.2018.02.005",
language = "English",
volume = "179",
pages = "1--19",
journal = "Earth-Science Reviews",
issn = "0012-8252",
publisher = "Elsevier",

}

TY - JOUR

T1 - Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe)

T2 - Eruption chronology, correlation potential and geodynamic implications

AU - Lukács, Réka

AU - Harangi, S.

AU - Guillong, Marcel

AU - Bachmann, Olivier

AU - Fodor, L.

AU - Buret, Yannick

AU - Dunkl, István

AU - Sliwinski, Jakub

AU - von Quadt, Albrecht

AU - Peytcheva, Irena

AU - Zimmerer, Matthew

PY - 2018/4/1

Y1 - 2018/4/1

N2 - Formation and evolution of the Pannonian Basin as part of the Mediterranean region was accompanied by eruptions of compositionally diverse magmas during the Neogene to Quaternary. The long-lasting magmatic activity began with some of the most voluminous silicic eruptions in Europe for the last 20 Myr. This paper describes the eruption chronology of this volcanic activity using new, high-quality zircon U-Pb dates, and provides the first estimates on the volume and areal distribution of the volcanic products, characterizes the magma composition and discusses the silicic magmatism in a region, where the continental lithosphere underwent significant extension. A thorough zircon geochronological study was conducted on samples collected from ignimbrites and pyroclastic fall deposits exposed in the Bükkalja Volcanic Field. In-situ LA-ICP-MS analysis on zircon grains provided a fast, cheap and accurate method for such detailed geochronological work, where the volcanic products occur in scattered outcrops that often have poor stratigraphic constraints. The interpreted eruption ages were determined from the youngest zircon age population within the samples and this methodology was validated by new single zircon CA-ID-TIMS dates and sanidine Ar-Ar ages. The volcanism covers about 4 Myrs, from 18.2 Ma to 14.4 Ma and involved at least eight eruptive phases. Within this, four large eruption events were recognized at 14.358 ± 0.015 Ma (Harsány ignimbrite), 14.880 ± 0.014 Ma (Demjén ignimbrite), 16.816 ± 0.059 Ma (Bogács unit) and 17.055 ± 0.024 Ma (Mangó ignimbrite), which are found in areas across the Pannonian Basin and elsewhere in central Europe. Considering all the potential sources of silicic ash found in the Paratethys sub-basins around the Pannonian Basin and along the northern Alps and in central Italy, we suggest that they were probably derived almost exclusively from the Pannonian Basin as shown by zircon U-Pb dates presented in this paper and published comparable age data from several localities. The new eruption ages considerably refine the Early to Mid-Miocene chronostratigraphy of the Pannonian basin, where the extensive volcanoclastic horizons are used as important marker layers. The cumulative volume of the volcanic material formed during this 4 Myr long silicic volcanism is estimated to be >4000 km3, consistent with a significant ignimbrite flare-up event. Zircon crystallization ages indicate magma intrusions and formations of magma reservoirs in the continental crust for prolonged period, likely >1 Myr prior to the onset of the silicic volcanism accompanied with sporadic andesitic to dacitic volcanic activities. Mafic magmas were formed by melting of the thinned lithospheric mantle metasomatized previously by subduction-related fluids and emplaced at the crust-mantle boundary. They evolved further by assimilation and fractional crystallization to generate silicic magmas, which ascended into the pre-warmed upper crust and formed extended magma storage regions. Zircon Hf isotope and bulk rock Sr-Nd isotopic data indicate a sharp decrease of crustal and/or increase of asthenospheric mantle input after 16.2 Ma, suggesting that by this time the crust, and the lithospheric mantle was considerably thinned. This magmatism appears to have had a structural relationship to tectonic movements characterized by strike-slip and normal faults within the Mid-Hungarian Shear Zone as well as vertical axis block rotations, when the two microplates were juxtaposed. Our new zircon ages helped to refine the age of two major block-rotation phases associated with faulting. This volcanism shows many similarities with other rift-related silicic volcanic activities such as the Taupo Volcanic Zone (New Zealand) and the Basin and Range Province (USA).

AB - Formation and evolution of the Pannonian Basin as part of the Mediterranean region was accompanied by eruptions of compositionally diverse magmas during the Neogene to Quaternary. The long-lasting magmatic activity began with some of the most voluminous silicic eruptions in Europe for the last 20 Myr. This paper describes the eruption chronology of this volcanic activity using new, high-quality zircon U-Pb dates, and provides the first estimates on the volume and areal distribution of the volcanic products, characterizes the magma composition and discusses the silicic magmatism in a region, where the continental lithosphere underwent significant extension. A thorough zircon geochronological study was conducted on samples collected from ignimbrites and pyroclastic fall deposits exposed in the Bükkalja Volcanic Field. In-situ LA-ICP-MS analysis on zircon grains provided a fast, cheap and accurate method for such detailed geochronological work, where the volcanic products occur in scattered outcrops that often have poor stratigraphic constraints. The interpreted eruption ages were determined from the youngest zircon age population within the samples and this methodology was validated by new single zircon CA-ID-TIMS dates and sanidine Ar-Ar ages. The volcanism covers about 4 Myrs, from 18.2 Ma to 14.4 Ma and involved at least eight eruptive phases. Within this, four large eruption events were recognized at 14.358 ± 0.015 Ma (Harsány ignimbrite), 14.880 ± 0.014 Ma (Demjén ignimbrite), 16.816 ± 0.059 Ma (Bogács unit) and 17.055 ± 0.024 Ma (Mangó ignimbrite), which are found in areas across the Pannonian Basin and elsewhere in central Europe. Considering all the potential sources of silicic ash found in the Paratethys sub-basins around the Pannonian Basin and along the northern Alps and in central Italy, we suggest that they were probably derived almost exclusively from the Pannonian Basin as shown by zircon U-Pb dates presented in this paper and published comparable age data from several localities. The new eruption ages considerably refine the Early to Mid-Miocene chronostratigraphy of the Pannonian basin, where the extensive volcanoclastic horizons are used as important marker layers. The cumulative volume of the volcanic material formed during this 4 Myr long silicic volcanism is estimated to be >4000 km3, consistent with a significant ignimbrite flare-up event. Zircon crystallization ages indicate magma intrusions and formations of magma reservoirs in the continental crust for prolonged period, likely >1 Myr prior to the onset of the silicic volcanism accompanied with sporadic andesitic to dacitic volcanic activities. Mafic magmas were formed by melting of the thinned lithospheric mantle metasomatized previously by subduction-related fluids and emplaced at the crust-mantle boundary. They evolved further by assimilation and fractional crystallization to generate silicic magmas, which ascended into the pre-warmed upper crust and formed extended magma storage regions. Zircon Hf isotope and bulk rock Sr-Nd isotopic data indicate a sharp decrease of crustal and/or increase of asthenospheric mantle input after 16.2 Ma, suggesting that by this time the crust, and the lithospheric mantle was considerably thinned. This magmatism appears to have had a structural relationship to tectonic movements characterized by strike-slip and normal faults within the Mid-Hungarian Shear Zone as well as vertical axis block rotations, when the two microplates were juxtaposed. Our new zircon ages helped to refine the age of two major block-rotation phases associated with faulting. This volcanism shows many similarities with other rift-related silicic volcanic activities such as the Taupo Volcanic Zone (New Zealand) and the Basin and Range Province (USA).

KW - Bükkalja Volcanic Field

KW - Eruption chronology

KW - Pannonian Basin

KW - Paratethys

KW - Silicic ignimbrite

KW - syn-extensional volcanism

KW - Zircon ages

UR - http://www.scopus.com/inward/record.url?scp=85044371891&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044371891&partnerID=8YFLogxK

U2 - 10.1016/j.earscirev.2018.02.005

DO - 10.1016/j.earscirev.2018.02.005

M3 - Review article

VL - 179

SP - 1

EP - 19

JO - Earth-Science Reviews

JF - Earth-Science Reviews

SN - 0012-8252

ER -