Dynamic and controlled rate thermal analysis of attapulgite

Veronika Vágvölgyi, Lisa M. Daniel, Caroline Pinto, J. Kristóf, R. L. Frost, Erzsébet Horváth

Research output: Contribution to journalArticle

42 Citations (Scopus)


The thermal decomposition of the clay mineral attapulgite has been studied using a combination of dynamic and controlled rate thermal analysis. In the dynamic experiment two dehydration steps are observed over the 20-114 and 114-201°C temperature range. In the dynamic experiment three dehydroxylation steps are observed over the temperature ranges 201-337, 337-638 and 638-982°C. The CRTA technology enables the separation of the thermal decomposition steps. Calculations show the amount of water in the attapulgite mineral is variable. Dehydration in the CRTA experiment occurs as quasi-isothermal equilibria. Dehydroxylation occurs as a series of non-isothermal decomposition steps. CRTA technology offers better resolution and a more detailed interpretation of the decomposition processes of a clay mineral such as attapulgite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal partial collapse of the layers of attapulgite as the attapulgite is converted to an anhydride.

Original languageEnglish
Pages (from-to)589-594
Number of pages6
JournalJournal of Thermal Analysis and Calorimetry
Issue number2
Publication statusPublished - May 2008


  • Attapulgite
  • CRTA
  • Palygorskites
  • Sepiolite
  • Thermal analysis
  • Thermogravimetry

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Dynamic and controlled rate thermal analysis of attapulgite'. Together they form a unique fingerprint.

  • Cite this