Double-resonance g-factor measurements by quantum jump spectroscopy

W. Quint, B. Nikoobakht, U. D. Jentschura

Research output: Contribution to journalArticle

9 Citations (Scopus)


With the advent of high-precision frequency combs that can bridge large frequency intervals, new possibilities have opened up for the laser spectroscopy of atomic transitions. Here, it is shown that laser spectroscopic techniques can also be used to determine the ground-state g factor of a bound electron. The proposal is based on a double-resonance experiment, where the spin state of a ground-state electron is constantly being read out by laser excitation to the atomic L shell, while the spin flip transitions are being induced simultaneously by a resonant microwave field, leading to the detection of the quantum jumps between the ground-state Zeeman sublevels. The magnetic moments of electrons in light hydrogen-like ions could thus be measured with advanced laser technology. Corresponding theoretical predictions are also presented.

Original languageEnglish
Pages (from-to)30-34
Number of pages5
JournalJETP Letters
Issue number1
Publication statusPublished - Jan 1 2008


ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Cite this