Distribution of calbindin D28k immunoreactive cells and fibers in the monkey hippocampus, subicular complex and entorhinal cortex. A light and electron microscopic study.

L. Séress, C. Léránth, M. Frotscher

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Calbindin D28k (CB)-containing neurons and axon terminals in the hippocampus, subicular complex and entorhinal cortex of the African green monkey (Cercopithecus aethiops) were studied by light and electron microscopic immunocytochemistry. CB was present in granule cells of the dentate gyrus, pyramidal neurons of hippocampal fields CA1 and CA2, and in pyramidal neurons of the prosubiculum and entorhinal cortex. In contrast, pyramidal neurons in the CA3, subiculum and presubiculum were not labeled. A subpopulation of non-principal neurons (non-granule and non-pyramidal cells) was also stained for CB. These cells were rare in the hippocampus and subiculum, but were more frequently observed in the presubiculum, parasubiculum, and in the entorhinal cortex. In the electron microscope, these non-principal cells displayed fine-structural characteristics of GABAergig neurons. Strongly stained CB-immunoreactive bundles of myelinated axons were found in the molecular layer of the subiculum and in various layers of the presubiculum. The CB-positive, unmyelinated axons of the granule cells, the mossy fibers, gave rise to distinct fiber bundles. Mossy fiber terminals formed asymmetric synapses on large spines in the hilus and CA3. In addition to the giant mossy fiber boutons, there were large CB-positive terminals that formed asymmetric synapses with dentritic spines throughout the hippocampal formation. These boutons also formed axo-dendritic synapses in the entorhinal cortex. Axon terminals that formed symmetric synapses and might, thus, be derived from non-principal neurons, were rarely found in the hippocampus and subicular complex. They were more frequent in the parasubiculum and entorhinal cortex. These CB-positive terminals were small, heavily immunostained, and formed symmetric axo-dendritic synapses. Our results demonstrate a great diversity of CB-containing neurons, axons, and terminals in the monkey hippocampal formation. In general, regions that received a dense innervation of CB-positive terminals displayed pyramidal neurons that all lacked this calcium-binding protein. Further studies are required to understand the functional significance of these findings.

Original languageEnglish
Pages (from-to)473-486
Number of pages14
JournalJournal fur Hirnforschung
Volume35
Issue number4
Publication statusPublished - 1994

Fingerprint

Calbindin 1
Entorhinal Cortex
Haplorhini
Hippocampus
Electrons
Light
Synapses
Pyramidal Cells
Parahippocampal Gyrus
Presynaptic Terminals
Neurons
Cercopithecus aethiops
Axons
Spine
Calcium-Binding Proteins
Dentate Gyrus
Immunohistochemistry

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

@article{d7250e40a5d44a48849b88c17740e665,
title = "Distribution of calbindin D28k immunoreactive cells and fibers in the monkey hippocampus, subicular complex and entorhinal cortex. A light and electron microscopic study.",
abstract = "Calbindin D28k (CB)-containing neurons and axon terminals in the hippocampus, subicular complex and entorhinal cortex of the African green monkey (Cercopithecus aethiops) were studied by light and electron microscopic immunocytochemistry. CB was present in granule cells of the dentate gyrus, pyramidal neurons of hippocampal fields CA1 and CA2, and in pyramidal neurons of the prosubiculum and entorhinal cortex. In contrast, pyramidal neurons in the CA3, subiculum and presubiculum were not labeled. A subpopulation of non-principal neurons (non-granule and non-pyramidal cells) was also stained for CB. These cells were rare in the hippocampus and subiculum, but were more frequently observed in the presubiculum, parasubiculum, and in the entorhinal cortex. In the electron microscope, these non-principal cells displayed fine-structural characteristics of GABAergig neurons. Strongly stained CB-immunoreactive bundles of myelinated axons were found in the molecular layer of the subiculum and in various layers of the presubiculum. The CB-positive, unmyelinated axons of the granule cells, the mossy fibers, gave rise to distinct fiber bundles. Mossy fiber terminals formed asymmetric synapses on large spines in the hilus and CA3. In addition to the giant mossy fiber boutons, there were large CB-positive terminals that formed asymmetric synapses with dentritic spines throughout the hippocampal formation. These boutons also formed axo-dendritic synapses in the entorhinal cortex. Axon terminals that formed symmetric synapses and might, thus, be derived from non-principal neurons, were rarely found in the hippocampus and subicular complex. They were more frequent in the parasubiculum and entorhinal cortex. These CB-positive terminals were small, heavily immunostained, and formed symmetric axo-dendritic synapses. Our results demonstrate a great diversity of CB-containing neurons, axons, and terminals in the monkey hippocampal formation. In general, regions that received a dense innervation of CB-positive terminals displayed pyramidal neurons that all lacked this calcium-binding protein. Further studies are required to understand the functional significance of these findings.",
author = "L. S{\'e}ress and C. L{\'e}r{\'a}nth and M. Frotscher",
year = "1994",
language = "English",
volume = "35",
pages = "473--486",
journal = "Journal fur Hirnforschung",
issn = "0021-8359",
publisher = "Akademie Verlag GMBH",
number = "4",

}

TY - JOUR

T1 - Distribution of calbindin D28k immunoreactive cells and fibers in the monkey hippocampus, subicular complex and entorhinal cortex. A light and electron microscopic study.

AU - Séress, L.

AU - Léránth, C.

AU - Frotscher, M.

PY - 1994

Y1 - 1994

N2 - Calbindin D28k (CB)-containing neurons and axon terminals in the hippocampus, subicular complex and entorhinal cortex of the African green monkey (Cercopithecus aethiops) were studied by light and electron microscopic immunocytochemistry. CB was present in granule cells of the dentate gyrus, pyramidal neurons of hippocampal fields CA1 and CA2, and in pyramidal neurons of the prosubiculum and entorhinal cortex. In contrast, pyramidal neurons in the CA3, subiculum and presubiculum were not labeled. A subpopulation of non-principal neurons (non-granule and non-pyramidal cells) was also stained for CB. These cells were rare in the hippocampus and subiculum, but were more frequently observed in the presubiculum, parasubiculum, and in the entorhinal cortex. In the electron microscope, these non-principal cells displayed fine-structural characteristics of GABAergig neurons. Strongly stained CB-immunoreactive bundles of myelinated axons were found in the molecular layer of the subiculum and in various layers of the presubiculum. The CB-positive, unmyelinated axons of the granule cells, the mossy fibers, gave rise to distinct fiber bundles. Mossy fiber terminals formed asymmetric synapses on large spines in the hilus and CA3. In addition to the giant mossy fiber boutons, there were large CB-positive terminals that formed asymmetric synapses with dentritic spines throughout the hippocampal formation. These boutons also formed axo-dendritic synapses in the entorhinal cortex. Axon terminals that formed symmetric synapses and might, thus, be derived from non-principal neurons, were rarely found in the hippocampus and subicular complex. They were more frequent in the parasubiculum and entorhinal cortex. These CB-positive terminals were small, heavily immunostained, and formed symmetric axo-dendritic synapses. Our results demonstrate a great diversity of CB-containing neurons, axons, and terminals in the monkey hippocampal formation. In general, regions that received a dense innervation of CB-positive terminals displayed pyramidal neurons that all lacked this calcium-binding protein. Further studies are required to understand the functional significance of these findings.

AB - Calbindin D28k (CB)-containing neurons and axon terminals in the hippocampus, subicular complex and entorhinal cortex of the African green monkey (Cercopithecus aethiops) were studied by light and electron microscopic immunocytochemistry. CB was present in granule cells of the dentate gyrus, pyramidal neurons of hippocampal fields CA1 and CA2, and in pyramidal neurons of the prosubiculum and entorhinal cortex. In contrast, pyramidal neurons in the CA3, subiculum and presubiculum were not labeled. A subpopulation of non-principal neurons (non-granule and non-pyramidal cells) was also stained for CB. These cells were rare in the hippocampus and subiculum, but were more frequently observed in the presubiculum, parasubiculum, and in the entorhinal cortex. In the electron microscope, these non-principal cells displayed fine-structural characteristics of GABAergig neurons. Strongly stained CB-immunoreactive bundles of myelinated axons were found in the molecular layer of the subiculum and in various layers of the presubiculum. The CB-positive, unmyelinated axons of the granule cells, the mossy fibers, gave rise to distinct fiber bundles. Mossy fiber terminals formed asymmetric synapses on large spines in the hilus and CA3. In addition to the giant mossy fiber boutons, there were large CB-positive terminals that formed asymmetric synapses with dentritic spines throughout the hippocampal formation. These boutons also formed axo-dendritic synapses in the entorhinal cortex. Axon terminals that formed symmetric synapses and might, thus, be derived from non-principal neurons, were rarely found in the hippocampus and subicular complex. They were more frequent in the parasubiculum and entorhinal cortex. These CB-positive terminals were small, heavily immunostained, and formed symmetric axo-dendritic synapses. Our results demonstrate a great diversity of CB-containing neurons, axons, and terminals in the monkey hippocampal formation. In general, regions that received a dense innervation of CB-positive terminals displayed pyramidal neurons that all lacked this calcium-binding protein. Further studies are required to understand the functional significance of these findings.

UR - http://www.scopus.com/inward/record.url?scp=0028718596&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028718596&partnerID=8YFLogxK

M3 - Article

C2 - 7884210

AN - SCOPUS:0028718596

VL - 35

SP - 473

EP - 486

JO - Journal fur Hirnforschung

JF - Journal fur Hirnforschung

SN - 0021-8359

IS - 4

ER -