Disproving the Peres conjecture by showing Bell nonlocality from bound entanglement

Tamás Vértesi, Nicolas Brunner

Research output: Contribution to journalArticle

48 Citations (Scopus)

Abstract

Quantum entanglement has a central role in many areas of physics. To grasp the essence of this phenomenon, it is fundamental to understand how different manifestations of entanglement relate to each other. In 1999, Peres conjectured that Bell nonlocality is equivalent to distillability of entanglement. The intuition of Peres was that the non-classicality of an entangled state, as witnessed via Bell inequality violation, implies that pure entanglement can be distilled from this state, hence making it useful for quantum information protocols. Subsequently, the Peres conjecture was shown to hold true in several specific cases, and became a central open question in quantum information theory. Here we disprove the Peres conjecture by showing that an undistillable bipartite entangled state - a bound entangled state - can violate a Bell inequality. Hence Bell nonlocality implies neither entanglement distillability, nor non-positivity under partial transposition. This clarifies the relation between three fundamental aspects of entanglement.

Original languageEnglish
Article number5297
JournalNature communications
Volume5
DOIs
Publication statusPublished - Feb 2015

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Disproving the Peres conjecture by showing Bell nonlocality from bound entanglement'. Together they form a unique fingerprint.

  • Cite this