Dirac Hamiltonian and Reissner-Nordström metric: Coulomb interaction in curved space-time

J. H. Noble, U. D. Jentschura

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

We investigate the spin-1/2 relativistic quantum dynamics in the curved space-time generated by a central massive charged object (black hole). This necessitates a study of the coupling of a Dirac particle to the Reissner-Nordström space-time geometry and the simultaneous covariant coupling to the central electrostatic field. The relativistic Dirac Hamiltonian for the Reissner-Nordström geometry is derived. A Foldy-Wouthuysen transformation reveals the presence of gravitational and electrogravitational spin-orbit coupling terms which generalize the Fokker precession terms found for the Dirac-Schwarzschild Hamiltonian, and other electrogravitational correction terms to the potential proportional to αnG, where α is the fine-structure constant and G is the gravitational coupling constant. The particle-antiparticle symmetry found for the Dirac-Schwarzschild geometry (and for other geometries which do not include electromagnetic interactions) is shown to be explicitly broken due to the electrostatic coupling. The resulting spectrum of radially symmetric, electrostatically bound systems (with gravitational corrections) is evaluated for example cases.

Original languageEnglish
Article number032108
JournalPhysical Review A
Volume93
Issue number3
DOIs
Publication statusPublished - Mar 4 2016

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint Dive into the research topics of 'Dirac Hamiltonian and Reissner-Nordström metric: Coulomb interaction in curved space-time'. Together they form a unique fingerprint.

  • Cite this