Dilepton creation based on an analytic hydrodynamic solution

Máté Csanád, Levente Krizsán

Research output: Contribution to journalArticle


High-energy collisions of various nuclei, so called "Little Bangs" are observed in various experiments of heavy ion colliders. The time evolution of the strongly interacting quark-gluon plasma created in heavy ion collisions can be described by hydrodynamical models. After expansion and cooling, the hadrons are created in a freeze-out. Their distribution describes the final state of this medium. To investigate the time evolution one needs to analyze penetrating probes, such as direct photon or dilepton observables, as these particles are created throughout the evolution of the medium. In this paper we analyze an 1+3 dimensional analytic solution of relativistic hydrodynamics, and we calculate dilepton transverse momentum and invariant mass distributions. We investigate the dependence of dilepton production on time evolution parameters, such as emission duration and equation of state. Using parameters from earlier fits of this model to photon and hadron spectra, we compare our calculations to measurements as well. The most important feature of this work is that dilepton observables are calculated from an exact, analytic, 1+3D solution of relativistic hydrodynamics that is also compatible with hadronic and direct photon observables.

Original languageEnglish
Pages (from-to)132-140
Number of pages9
JournalCentral European Journal of Physics
Issue number2
Publication statusPublished - Feb 2014


  • dileptons
  • hydrodynamics
  • quark-gluon plasma

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Dilepton creation based on an analytic hydrodynamic solution'. Together they form a unique fingerprint.

  • Cite this