Differences in the molecular structure of the blood-brain barrier in the cerebral cortex and white matter: An in silico, in vitro, and ex vivo study

Ádám Nyúl-Tóth, Maria Suciu, Judit Molnár, Csilla Fazakas, János Haskó, Hildegard Herman, Attila E. Farkas, J. Kaszaki, Anca Hermenean, I. Wilhelm, I. Krizbai

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

The blood-brain barrier (BBB) is the main interface controlling molecular and cellular traffic between the central nervous system (CNS) and the periphery. It consists of cerebral endothelial cells (CECs) interconnected by continuous tight junctions, and closely associated pericytes and astrocytes. Different parts of the CNS have diverse functions and structures and may be subject of different pathologies, in which the BBB is actively involved. It is largely unknown, however, what are the cellular and molecular differences of the BBB in different regions of the brain. Using in silico, in vitro, and ex vivo techniques we compared the expression of BBB-associated genes and proteins (i.e., markers of CECs, brain pericytes, and astrocytes) in the cortical grey matter and white matter. In silico human database analysis (obtained from recalculated data of the Allen Brain Atlas), qPCR, Western blot, and immunofluorescence studies on porcine and mouse brain tissue indicated an increased expression of glial fibrillary acidic protein in astrocytes in the white matter compared with the grey matter. We have also found increased expression of genes of the junctional complex of CECs (occludin, claudin-5, and α-catenin) in the white matter compared with the cerebral cortex. Accordingly, occludin, claudin-5, and α-catenin proteins showed increased expression in CECs of the white matter compared with endothelial cells of the cortical grey matter. In parallel, barrier properties of white matter CECs were superior as well. These differences might be important in the pathogenesis of diseases differently affecting distinct regions of the brain.

Original languageEnglish
Pages (from-to)H1702-H1714
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume310
Issue number11
DOIs
Publication statusPublished - Jun 1 2016

    Fingerprint

Keywords

  • Allen brain atlas
  • Astrocyte
  • Blood-brain barrier
  • Cerebral endothelial cell
  • GFAP
  • Neurovascular unit
  • Pericyte
  • Tight junction

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Cite this