Detection of nanobacteria-like particles in human atherosclerotic plaques

Research output: Contribution to journalArticle

48 Citations (Scopus)


Recent and historical evidence is consistent with the view that atherosclerosis is an infectious disease or microbial toxicosis impacted by genetics and behavior. Because small bacterial-like particles, also known as nanobacteria have been detected in kidney stones, kidney and liver cyst fluids, and can form a calcium apatite coat we posited that this agent is present in calcified human atherosclerotic plaques. Carotid and aortic atherosclerotic plaques and blood samples collected at autopsy were examined for nanobacteria-like structures by light microscopy (hematoxylin-eosin and a calcium-specific von Kossa staining), immuno-gold labeling for transmission electron microscopy (TEM) for specific nanobacterial antigens, and propagation from homogenized, filtered specimens in culture medium. Nanobacterial antigens were identified in situ by immuno-TEM in 9 of 14 plaque specimens, but none of the normal carotid or aortic tissue (5 specimens). Nanobacteria-like particles were propagated from 26 of 42 sclerotic aorta and carotid samples and were confirmed by dot immunoblot, light microscopy and TEM. [3H]L-aspartic acid was incorporated into high molecular weight compounds of demineralized particles. PCR amplification of 16S rDNA sequences from the particles was unsuccessful by traditional protocols. Identification of nanobacteria-like particles at the lesion supports, but does not by itself prove the hypothesis that these agents contribute to the pathogenesis of atherosclerosis, especially vascular calcifications.

Original languageEnglish
Pages (from-to)233-245
Number of pages13
JournalActa biologica Hungarica
Issue number3-4
Publication statusPublished - Sep 12 2005


  • Aorta
  • Atherosclerosis
  • Carotid artery
  • Nanobacteria-like particles
  • Vascular plaque

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Environmental Science(all)
  • Neurology

Fingerprint Dive into the research topics of 'Detection of nanobacteria-like particles in human atherosclerotic plaques'. Together they form a unique fingerprint.

  • Cite this