Demise of the last two spire-bearing brachiopod orders (Spiriferinida and Athyridida) at the Toarcian (Early Jurassic) extinction event

Attila Vörös, Ádám T. Kocsis, J. Pálfy

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Brachiopods were severely hit by several mass extinctions which fundamentally shaped their long evolutionary history. After the devastating end-Permian extinction, the fate of the four surviving orders differed significantly during the Triassic and Jurassic. Two orders, the rhynchonellids and terebratulids are extant today, whereas spiriferinids and athyridids, which possess spiral brachidia, suffered heavy losses at the end of the Triassic and became extinct in the Early Jurassic Toarcian event. Although the doom of the spire-bearing orders has been thought to be related to physiological traits, extinction selectivity across the end-Triassic and Toarcian event has not been rigorously assessed previously, and the reasons for their demise at the later and lesser Toarcian event, rather than at the earlier and greater end-Triassic crisis remained unexplored. Using primarily the Paleobiology Database, we constructed diversity curves, estimated taxonomic rates, and assessed the temporal changes in geographic distribution of the two spire-bearing and two other orders in the Triassic-Jurassic interval. After shared trends and similar origination rates in the post-Permian recovery leading to a Late Triassic diversity maximum, the end-Triassic extinction was selective and preferentially eliminated the spire-bearers. In contrast to the rebound of rhynchonellids and terebratulids, spire-bearers failed to recover in the Early Jurassic, and their repeated selective extinction at the Toarcian event led to their final demise. The end-Triassic event also terminated the worldwide geographic distribution of spire-bearers, confining them to the Western Tethys, whereas the other groups were able to re-establish their cosmopolitan distribution. The morphologically diverse spire-bearers represent specialized adaptation, which further increased their extinction vulnerability compared to the other groups with conservative biconvex shell morphology. Another key difference is the physiological disadvantage of the fixed lophophore and passive feeding of spire-bearers, which became critical at times of increased environmental stress. The spire-bearing spiriferinids and athyridids were “dead clades walking” in the Early Jurassic and their disappearance in the Early Toarcian represents the last major, order-level extinction event for the brachiopods.

Original languageEnglish
Pages (from-to)233-241
Number of pages9
JournalPalaeogeography, Palaeoclimatology, Palaeoecology
Volume457
DOIs
Publication statusPublished - Sep 1 2016

Fingerprint

Toarcian
brachiopod
Triassic
extinction
Jurassic
geographical distribution
Permian
paleobiology
mass extinction
walking
environmental stress
Tethys
vulnerability
history
shell

Keywords

  • Diversity
  • End-Triassic
  • Mass extinction
  • Paleobiogeographic distribution
  • Paleobiology Database

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Palaeontology
  • Earth-Surface Processes
  • Oceanography

Cite this

@article{3fff3f3626764eeab68807033ad8eae6,
title = "Demise of the last two spire-bearing brachiopod orders (Spiriferinida and Athyridida) at the Toarcian (Early Jurassic) extinction event",
abstract = "Brachiopods were severely hit by several mass extinctions which fundamentally shaped their long evolutionary history. After the devastating end-Permian extinction, the fate of the four surviving orders differed significantly during the Triassic and Jurassic. Two orders, the rhynchonellids and terebratulids are extant today, whereas spiriferinids and athyridids, which possess spiral brachidia, suffered heavy losses at the end of the Triassic and became extinct in the Early Jurassic Toarcian event. Although the doom of the spire-bearing orders has been thought to be related to physiological traits, extinction selectivity across the end-Triassic and Toarcian event has not been rigorously assessed previously, and the reasons for their demise at the later and lesser Toarcian event, rather than at the earlier and greater end-Triassic crisis remained unexplored. Using primarily the Paleobiology Database, we constructed diversity curves, estimated taxonomic rates, and assessed the temporal changes in geographic distribution of the two spire-bearing and two other orders in the Triassic-Jurassic interval. After shared trends and similar origination rates in the post-Permian recovery leading to a Late Triassic diversity maximum, the end-Triassic extinction was selective and preferentially eliminated the spire-bearers. In contrast to the rebound of rhynchonellids and terebratulids, spire-bearers failed to recover in the Early Jurassic, and their repeated selective extinction at the Toarcian event led to their final demise. The end-Triassic event also terminated the worldwide geographic distribution of spire-bearers, confining them to the Western Tethys, whereas the other groups were able to re-establish their cosmopolitan distribution. The morphologically diverse spire-bearers represent specialized adaptation, which further increased their extinction vulnerability compared to the other groups with conservative biconvex shell morphology. Another key difference is the physiological disadvantage of the fixed lophophore and passive feeding of spire-bearers, which became critical at times of increased environmental stress. The spire-bearing spiriferinids and athyridids were “dead clades walking” in the Early Jurassic and their disappearance in the Early Toarcian represents the last major, order-level extinction event for the brachiopods.",
keywords = "Diversity, End-Triassic, Mass extinction, Paleobiogeographic distribution, Paleobiology Database",
author = "Attila V{\"o}r{\"o}s and Kocsis, {{\'A}d{\'a}m T.} and J. P{\'a}lfy",
year = "2016",
month = "9",
day = "1",
doi = "10.1016/j.palaeo.2016.06.022",
language = "English",
volume = "457",
pages = "233--241",
journal = "Palaeogeography, Palaeoclimatology, Palaeoecology",
issn = "0031-0182",
publisher = "Elsevier",

}

TY - JOUR

T1 - Demise of the last two spire-bearing brachiopod orders (Spiriferinida and Athyridida) at the Toarcian (Early Jurassic) extinction event

AU - Vörös, Attila

AU - Kocsis, Ádám T.

AU - Pálfy, J.

PY - 2016/9/1

Y1 - 2016/9/1

N2 - Brachiopods were severely hit by several mass extinctions which fundamentally shaped their long evolutionary history. After the devastating end-Permian extinction, the fate of the four surviving orders differed significantly during the Triassic and Jurassic. Two orders, the rhynchonellids and terebratulids are extant today, whereas spiriferinids and athyridids, which possess spiral brachidia, suffered heavy losses at the end of the Triassic and became extinct in the Early Jurassic Toarcian event. Although the doom of the spire-bearing orders has been thought to be related to physiological traits, extinction selectivity across the end-Triassic and Toarcian event has not been rigorously assessed previously, and the reasons for their demise at the later and lesser Toarcian event, rather than at the earlier and greater end-Triassic crisis remained unexplored. Using primarily the Paleobiology Database, we constructed diversity curves, estimated taxonomic rates, and assessed the temporal changes in geographic distribution of the two spire-bearing and two other orders in the Triassic-Jurassic interval. After shared trends and similar origination rates in the post-Permian recovery leading to a Late Triassic diversity maximum, the end-Triassic extinction was selective and preferentially eliminated the spire-bearers. In contrast to the rebound of rhynchonellids and terebratulids, spire-bearers failed to recover in the Early Jurassic, and their repeated selective extinction at the Toarcian event led to their final demise. The end-Triassic event also terminated the worldwide geographic distribution of spire-bearers, confining them to the Western Tethys, whereas the other groups were able to re-establish their cosmopolitan distribution. The morphologically diverse spire-bearers represent specialized adaptation, which further increased their extinction vulnerability compared to the other groups with conservative biconvex shell morphology. Another key difference is the physiological disadvantage of the fixed lophophore and passive feeding of spire-bearers, which became critical at times of increased environmental stress. The spire-bearing spiriferinids and athyridids were “dead clades walking” in the Early Jurassic and their disappearance in the Early Toarcian represents the last major, order-level extinction event for the brachiopods.

AB - Brachiopods were severely hit by several mass extinctions which fundamentally shaped their long evolutionary history. After the devastating end-Permian extinction, the fate of the four surviving orders differed significantly during the Triassic and Jurassic. Two orders, the rhynchonellids and terebratulids are extant today, whereas spiriferinids and athyridids, which possess spiral brachidia, suffered heavy losses at the end of the Triassic and became extinct in the Early Jurassic Toarcian event. Although the doom of the spire-bearing orders has been thought to be related to physiological traits, extinction selectivity across the end-Triassic and Toarcian event has not been rigorously assessed previously, and the reasons for their demise at the later and lesser Toarcian event, rather than at the earlier and greater end-Triassic crisis remained unexplored. Using primarily the Paleobiology Database, we constructed diversity curves, estimated taxonomic rates, and assessed the temporal changes in geographic distribution of the two spire-bearing and two other orders in the Triassic-Jurassic interval. After shared trends and similar origination rates in the post-Permian recovery leading to a Late Triassic diversity maximum, the end-Triassic extinction was selective and preferentially eliminated the spire-bearers. In contrast to the rebound of rhynchonellids and terebratulids, spire-bearers failed to recover in the Early Jurassic, and their repeated selective extinction at the Toarcian event led to their final demise. The end-Triassic event also terminated the worldwide geographic distribution of spire-bearers, confining them to the Western Tethys, whereas the other groups were able to re-establish their cosmopolitan distribution. The morphologically diverse spire-bearers represent specialized adaptation, which further increased their extinction vulnerability compared to the other groups with conservative biconvex shell morphology. Another key difference is the physiological disadvantage of the fixed lophophore and passive feeding of spire-bearers, which became critical at times of increased environmental stress. The spire-bearing spiriferinids and athyridids were “dead clades walking” in the Early Jurassic and their disappearance in the Early Toarcian represents the last major, order-level extinction event for the brachiopods.

KW - Diversity

KW - End-Triassic

KW - Mass extinction

KW - Paleobiogeographic distribution

KW - Paleobiology Database

UR - http://www.scopus.com/inward/record.url?scp=84975222049&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84975222049&partnerID=8YFLogxK

U2 - 10.1016/j.palaeo.2016.06.022

DO - 10.1016/j.palaeo.2016.06.022

M3 - Article

AN - SCOPUS:84975222049

VL - 457

SP - 233

EP - 241

JO - Palaeogeography, Palaeoclimatology, Palaeoecology

JF - Palaeogeography, Palaeoclimatology, Palaeoecology

SN - 0031-0182

ER -