Davenport-Schinzel theory of matrices

Z. Füredi, Péter Hajnal

Research output: Contribution to journalArticle

65 Citations (Scopus)

Abstract

Let C be a configuration of 1's. We define f(n;C) to be the maximal number of 1's in a 0-1 matrix of size n × n not having C as a subconfiguration. We consider the problem of determining the order of f(n;C) for several forbidden C's. Among other results we prove that f(n;1111) = Θ(α(n)n), where α(n) is the inverse of the Ackermann function.

Original languageEnglish
Pages (from-to)233-251
Number of pages19
JournalDiscrete Mathematics
Volume103
Issue number3
DOIs
Publication statusPublished - May 28 1992

Fingerprint

(0, 1)-matrices
Configuration

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

Davenport-Schinzel theory of matrices. / Füredi, Z.; Hajnal, Péter.

In: Discrete Mathematics, Vol. 103, No. 3, 28.05.1992, p. 233-251.

Research output: Contribution to journalArticle

Füredi, Z. ; Hajnal, Péter. / Davenport-Schinzel theory of matrices. In: Discrete Mathematics. 1992 ; Vol. 103, No. 3. pp. 233-251.
@article{216ad61a5d934e2f831f3afe44c45076,
title = "Davenport-Schinzel theory of matrices",
abstract = "Let C be a configuration of 1's. We define f(n;C) to be the maximal number of 1's in a 0-1 matrix of size n × n not having C as a subconfiguration. We consider the problem of determining the order of f(n;C) for several forbidden C's. Among other results we prove that f(n;1111) = Θ(α(n)n), where α(n) is the inverse of the Ackermann function.",
author = "Z. F{\"u}redi and P{\'e}ter Hajnal",
year = "1992",
month = "5",
day = "28",
doi = "10.1016/0012-365X(92)90316-8",
language = "English",
volume = "103",
pages = "233--251",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "3",

}

TY - JOUR

T1 - Davenport-Schinzel theory of matrices

AU - Füredi, Z.

AU - Hajnal, Péter

PY - 1992/5/28

Y1 - 1992/5/28

N2 - Let C be a configuration of 1's. We define f(n;C) to be the maximal number of 1's in a 0-1 matrix of size n × n not having C as a subconfiguration. We consider the problem of determining the order of f(n;C) for several forbidden C's. Among other results we prove that f(n;1111) = Θ(α(n)n), where α(n) is the inverse of the Ackermann function.

AB - Let C be a configuration of 1's. We define f(n;C) to be the maximal number of 1's in a 0-1 matrix of size n × n not having C as a subconfiguration. We consider the problem of determining the order of f(n;C) for several forbidden C's. Among other results we prove that f(n;1111) = Θ(α(n)n), where α(n) is the inverse of the Ackermann function.

UR - http://www.scopus.com/inward/record.url?scp=0038339236&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038339236&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(92)90316-8

DO - 10.1016/0012-365X(92)90316-8

M3 - Article

VL - 103

SP - 233

EP - 251

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 3

ER -