Cytotoxicity of different excipients on RPMI 2650 human nasal epithelial cells

Tamás Horváth, Csilla Bartos, Alexandra Bocsik, Lóránd Kiss, Szilvia Veszelka, Mária A. Deli, Gabriella Újhelyi, Piroska Szabó-Révész, Rita Ambrus

Research output: Contribution to journalArticle

8 Citations (Scopus)


The nasal route receives a great deal of attention as a non-invasive method for the systemic administration of drugs. For nasal delivery, specific formulations containing excipients are used. Because of the sensitive respiratory mucosa, not only the active ingredients, but also additives need to be tested in appropriate models for toxicity. The aim of the study was to measure the cytotoxicity of six pharmaceutical excipients, which could help to reach larger residence time, better permeability, and increased solubility dissolution rate. The following excipients were investigated on RPMI 2650 human nasal septum tumor epithelial cells: β-D-mannitol, sodium hyaluronate, α and β-cyclodextrin, polyvinyl alcohol and methylcellulose. 3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye conversion assay and real-time impedance analysis were used to investigate cytotoxicity. No excipient showed toxicity at 0.3% (w/v) concentration or below while 1% concentration a significantly reduced metabolic activity was measured by MTT assay for methylcellulose and cyclodextrins. Using impedance measurements, only β-cyclodextrin (1%) was toxic to cells. Mannitol at 1% concentration had a barrier opening effect on epithelial cells, but caused no cellular damage. Based on the results, all additives at 0.3%, sodium hyaluronate and polyvinyl alcohol at 1% concentrations can be safely used for nasal formulations.

Original languageEnglish
Article number658
Issue number5
Publication statusPublished - May 1 2016



  • Cytotoxicity
  • MTT dye assay
  • Nasal
  • Nasal formulation
  • Real-time impedance analysis

ASJC Scopus subject areas

  • Analytical Chemistry
  • Chemistry (miscellaneous)
  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery
  • Physical and Theoretical Chemistry
  • Organic Chemistry

Cite this