Crosslinking with Bifunctional Reagents as a Means for Studying the Symmetry of Oligomeric Proteins


Research output: Contribution to journalArticle

53 Citations (Scopus)


A method based upon the principle that unlike domains of bonding are reflected in different re‐activities and distribution of residues that can be crosslinked, has been elaborated for the determination of symmetry of oligomeric proteins. The derivation of theoretical curves for the prediction of crosslinking patterns of tetramers produced by reaction with a bifunctional reagent and subsequent sodium‐dodecylsulphate‐gel electrophoretic analysis is presented. Based upon the theory the symmetry properties of a tetramer, to the extent whether it is an isologous or heterologous associationn, can be deduced by a simple calculation. Crosslinking patterns obtained with rabbit muscle aldolase and pig muscle lactate dehydrogenase after treatment with a series of diimidoesters of increasing chain length are evaluated and shown to be consistent with the expectations for isologous tetramers. From the patterns obtained with the various reagents the distances between lysyl residues located nearest to each other in different subunits in the two proteins could also be determined.

Original languageEnglish
Pages (from-to)373-383
Number of pages11
JournalEuropean Journal of Biochemistry
Issue number2
Publication statusPublished - Sep 1976

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of 'Crosslinking with Bifunctional Reagents as a Means for Studying the Symmetry of Oligomeric Proteins'. Together they form a unique fingerprint.

  • Cite this