Corticothalamic 5-9 Hz oscillations are more pro-epileptogenic than sleep spindles in rats

Didier Pinault, Andrea Slézia, L. Acsády

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

Absence-related spike-and-wave discharges (SWDs) occur in the thalamocortical system during quiet wakefulness or drowsiness. In feline generalized penicillin epilepsy, SWDs develop from sleep spindles. In contrast, in genetic absence epilepsy rats from Strasbourg (GAERS), SWDs develop from wake-related 5-9 Hz oscillations, which are distinct from spindle oscillations (7-15 Hz). Since these two oscillation types share common frequency bands and may contribute to SWD genesis, it is important to compare their thalamic cellular mechanisms. Under neuroleptic analgesia, in GAERS and control non-epileptic rats barbiturates abolished both SWDs and 5-9 Hz oscillations but increased the incidence of spindle-like oscillations. Within the thalamocortical circuit 5-9 Hz oscillations occurred more coherently than spindle-like oscillations. Intracellular events associated with 5-9 Hz and spindle-like oscillations were distinctively different in both thalamic relay and reticular neurons. In both cell types, SWDs and 5-9 Hz oscillations emerged from a significantly more depolarized membrane potential than spindle-like oscillations. In relay neurons, 5-9 Hz oscillations were mainly characterized by a rhythmic depolarization, which occurred during a tonic hyperpolarization and which could trigger an apparent low-threshold Ca2+ potential, whereas spindle-like oscillations were characterized by a rhythmic hyperpolarization. In reticular cells, SWDs and 5-9 Hz oscillations occurred during a tonic hyperpolarization, whereas spindle-like oscillations occurred during a long-lasting depolarizing envelope. The difference in the intracellular events between 5-9 Hz and spindle-like oscillations and similarities between 5-9 Hz oscillations and SWDs indicate that in GAERS, 5-9 Hz oscillations are more pro-epileptogenic than spindle-like oscillations. In conclusion, the present study strongly supports the hypothesis that SWDs in GAERS are generated by a wake-related corticothalamic resonance, and not by sleep-related, hypersynchronous, spindle-like activity originating in the thalamus.

Original languageEnglish
Pages (from-to)209-227
Number of pages19
JournalJournal of Physiology
Volume574
Issue number1
DOIs
Publication statusPublished - Jul 1 2006

Fingerprint

Absence Epilepsy
Sleep
Neurons
Generalized Epilepsy
Barbiturates
Wakefulness
Sleep Stages
Felidae
Thalamus
Penicillins
Membrane Potentials
Analgesia
Antipsychotic Agents
Incidence

ASJC Scopus subject areas

  • Physiology

Cite this

Corticothalamic 5-9 Hz oscillations are more pro-epileptogenic than sleep spindles in rats. / Pinault, Didier; Slézia, Andrea; Acsády, L.

In: Journal of Physiology, Vol. 574, No. 1, 01.07.2006, p. 209-227.

Research output: Contribution to journalArticle

@article{00c4e9e196ca42cfa168cad2aa1e3cef,
title = "Corticothalamic 5-9 Hz oscillations are more pro-epileptogenic than sleep spindles in rats",
abstract = "Absence-related spike-and-wave discharges (SWDs) occur in the thalamocortical system during quiet wakefulness or drowsiness. In feline generalized penicillin epilepsy, SWDs develop from sleep spindles. In contrast, in genetic absence epilepsy rats from Strasbourg (GAERS), SWDs develop from wake-related 5-9 Hz oscillations, which are distinct from spindle oscillations (7-15 Hz). Since these two oscillation types share common frequency bands and may contribute to SWD genesis, it is important to compare their thalamic cellular mechanisms. Under neuroleptic analgesia, in GAERS and control non-epileptic rats barbiturates abolished both SWDs and 5-9 Hz oscillations but increased the incidence of spindle-like oscillations. Within the thalamocortical circuit 5-9 Hz oscillations occurred more coherently than spindle-like oscillations. Intracellular events associated with 5-9 Hz and spindle-like oscillations were distinctively different in both thalamic relay and reticular neurons. In both cell types, SWDs and 5-9 Hz oscillations emerged from a significantly more depolarized membrane potential than spindle-like oscillations. In relay neurons, 5-9 Hz oscillations were mainly characterized by a rhythmic depolarization, which occurred during a tonic hyperpolarization and which could trigger an apparent low-threshold Ca2+ potential, whereas spindle-like oscillations were characterized by a rhythmic hyperpolarization. In reticular cells, SWDs and 5-9 Hz oscillations occurred during a tonic hyperpolarization, whereas spindle-like oscillations occurred during a long-lasting depolarizing envelope. The difference in the intracellular events between 5-9 Hz and spindle-like oscillations and similarities between 5-9 Hz oscillations and SWDs indicate that in GAERS, 5-9 Hz oscillations are more pro-epileptogenic than spindle-like oscillations. In conclusion, the present study strongly supports the hypothesis that SWDs in GAERS are generated by a wake-related corticothalamic resonance, and not by sleep-related, hypersynchronous, spindle-like activity originating in the thalamus.",
author = "Didier Pinault and Andrea Sl{\'e}zia and L. Acs{\'a}dy",
year = "2006",
month = "7",
day = "1",
doi = "10.1113/jphysiol.2006.108498",
language = "English",
volume = "574",
pages = "209--227",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",
number = "1",

}

TY - JOUR

T1 - Corticothalamic 5-9 Hz oscillations are more pro-epileptogenic than sleep spindles in rats

AU - Pinault, Didier

AU - Slézia, Andrea

AU - Acsády, L.

PY - 2006/7/1

Y1 - 2006/7/1

N2 - Absence-related spike-and-wave discharges (SWDs) occur in the thalamocortical system during quiet wakefulness or drowsiness. In feline generalized penicillin epilepsy, SWDs develop from sleep spindles. In contrast, in genetic absence epilepsy rats from Strasbourg (GAERS), SWDs develop from wake-related 5-9 Hz oscillations, which are distinct from spindle oscillations (7-15 Hz). Since these two oscillation types share common frequency bands and may contribute to SWD genesis, it is important to compare their thalamic cellular mechanisms. Under neuroleptic analgesia, in GAERS and control non-epileptic rats barbiturates abolished both SWDs and 5-9 Hz oscillations but increased the incidence of spindle-like oscillations. Within the thalamocortical circuit 5-9 Hz oscillations occurred more coherently than spindle-like oscillations. Intracellular events associated with 5-9 Hz and spindle-like oscillations were distinctively different in both thalamic relay and reticular neurons. In both cell types, SWDs and 5-9 Hz oscillations emerged from a significantly more depolarized membrane potential than spindle-like oscillations. In relay neurons, 5-9 Hz oscillations were mainly characterized by a rhythmic depolarization, which occurred during a tonic hyperpolarization and which could trigger an apparent low-threshold Ca2+ potential, whereas spindle-like oscillations were characterized by a rhythmic hyperpolarization. In reticular cells, SWDs and 5-9 Hz oscillations occurred during a tonic hyperpolarization, whereas spindle-like oscillations occurred during a long-lasting depolarizing envelope. The difference in the intracellular events between 5-9 Hz and spindle-like oscillations and similarities between 5-9 Hz oscillations and SWDs indicate that in GAERS, 5-9 Hz oscillations are more pro-epileptogenic than spindle-like oscillations. In conclusion, the present study strongly supports the hypothesis that SWDs in GAERS are generated by a wake-related corticothalamic resonance, and not by sleep-related, hypersynchronous, spindle-like activity originating in the thalamus.

AB - Absence-related spike-and-wave discharges (SWDs) occur in the thalamocortical system during quiet wakefulness or drowsiness. In feline generalized penicillin epilepsy, SWDs develop from sleep spindles. In contrast, in genetic absence epilepsy rats from Strasbourg (GAERS), SWDs develop from wake-related 5-9 Hz oscillations, which are distinct from spindle oscillations (7-15 Hz). Since these two oscillation types share common frequency bands and may contribute to SWD genesis, it is important to compare their thalamic cellular mechanisms. Under neuroleptic analgesia, in GAERS and control non-epileptic rats barbiturates abolished both SWDs and 5-9 Hz oscillations but increased the incidence of spindle-like oscillations. Within the thalamocortical circuit 5-9 Hz oscillations occurred more coherently than spindle-like oscillations. Intracellular events associated with 5-9 Hz and spindle-like oscillations were distinctively different in both thalamic relay and reticular neurons. In both cell types, SWDs and 5-9 Hz oscillations emerged from a significantly more depolarized membrane potential than spindle-like oscillations. In relay neurons, 5-9 Hz oscillations were mainly characterized by a rhythmic depolarization, which occurred during a tonic hyperpolarization and which could trigger an apparent low-threshold Ca2+ potential, whereas spindle-like oscillations were characterized by a rhythmic hyperpolarization. In reticular cells, SWDs and 5-9 Hz oscillations occurred during a tonic hyperpolarization, whereas spindle-like oscillations occurred during a long-lasting depolarizing envelope. The difference in the intracellular events between 5-9 Hz and spindle-like oscillations and similarities between 5-9 Hz oscillations and SWDs indicate that in GAERS, 5-9 Hz oscillations are more pro-epileptogenic than spindle-like oscillations. In conclusion, the present study strongly supports the hypothesis that SWDs in GAERS are generated by a wake-related corticothalamic resonance, and not by sleep-related, hypersynchronous, spindle-like activity originating in the thalamus.

UR - http://www.scopus.com/inward/record.url?scp=33745194421&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33745194421&partnerID=8YFLogxK

U2 - 10.1113/jphysiol.2006.108498

DO - 10.1113/jphysiol.2006.108498

M3 - Article

C2 - 16627566

AN - SCOPUS:33745194421

VL - 574

SP - 209

EP - 227

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

IS - 1

ER -