Cortical activation via an implanted wireless retinal prosthesis

Peter Walter, Zoltán F. Kisvárday, Michael Görtz, Nils Alteheld, Gernot Rossler, Thomas Stieglitz, Ulf T. Eysel

Research output: Contribution to journalArticle

79 Citations (Scopus)


PURPOSE. To demonstrate local cortical activations in the primary visual cortex of the cat as a result of retinal electrical stimulation by means of a completely wireless-controlled, implantable retinal prosthesis in a series of acute experiments. METHODS. The transfer of energy to drive the device and signals to activate any combination of 25 retinal electrodes was achieved completely wirelessly by an external transmitter positioned in front of the eye. Individually configured electrical stimuli were applied via any combination of 25 electrodes, on sending the necessary pulse parameters to the implant. Placement of the implant onto the retinal surface was achieved after lensectomy and vitrectomy in the cat. Fixation was performed with a retinal tack. Cortical activation patterns were recorded by means of optical imaging of intrinsic signals. RESULTS. Implantation and fixation were successfully performed in three cats. Wireless activation of the implant by radiofrequency was demonstrated by recording of stimulus artifacts from the sclera. Local activation of the visual cortex measured by optical imaging of intrinsic signals revealed a shift of cortical response that was well correlated with a change in the position of the activated retinal electrodes. CONCLUSIONS. The results demonstrate the retinotopic activation of the visual cortex using a completely wireless, remote-controlled retinal implant.

Original languageEnglish
Pages (from-to)1780-1785
Number of pages6
JournalInvestigative Ophthalmology and Visual Science
Issue number5
Publication statusPublished - Dec 1 2005

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Cortical activation via an implanted wireless retinal prosthesis'. Together they form a unique fingerprint.

  • Cite this

    Walter, P., Kisvárday, Z. F., Görtz, M., Alteheld, N., Rossler, G., Stieglitz, T., & Eysel, U. T. (2005). Cortical activation via an implanted wireless retinal prosthesis. Investigative Ophthalmology and Visual Science, 46(5), 1780-1785.