Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe

In situ trace element data of glass shards and mineral chemical constraints

S. Harangi, Paul R D Mason, Réka Lukács

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

The Neogene volcanism of the Carpathian-Pannonian Region, Eastern-Central Europe started with repeated explosive eruption of silicic magmas. Volcanic products consist mostly of non-welded and partially to densely welded ignimbrites, which cover large areas in the Pannonian Basin. Since this volcanism occurred during a long time interval, from 21 Ma to 13.5 Ma ago, these pyroclastic deposits have great stratigraphic importance, as well as providing valuable information about petrogenetic processes during the formation of the back-arc basin area. In this study, we used in situ trace element data of glasses (glass shards, pumice and fiamme glass) determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), combined with microprobe geochemical data of the main mineral phases (plagioclase, biotite), to correlate the scattered outcrops of the ignimbrite units. Based on these data, we distinguished four ignimbrite units in the Bükkalja Volcanic Field, Northern Pannonian Basin. Each of these units is characterized by specific geochemical fingerprints. Thorium, Nb, Y and the rare earth elements are the most effective discriminator elements in glasses. The modal composition of mineral phases (occurrence or lack of certain minerals) and chemistry of plagioclases and biotites are also good correlation tools, especially the Fe, Mg and Ti contents of biotites. We suggest that these correlation criteria, particularly the grain-specific LA-ICP-MS data, could be effectively used also in other ignimbrite fields and in wider tephrochronological studies. The in situ trace element composition of glasses, representing the liquid part of the erupted magma, can be also used to constrain the petrogenesis of the rhyolitic magmas. Trace element ratios such as La/Nb, La/Y and Th/Nb suggest the importance of minor (e.g., hornblende and ilmenite) and accessory (e.g., zircon, allanite) minerals controlling the composition of the erupted melt. Rhyolitic magmas probably evolved from metaluminous andesitic parental melts via fractional crystallization. Syn-eruptive magma mingling was detected in the genesis of the Middle Ignimbrite Unit, based on the strong intra-sample geochemical variation both in the glasses and in the phenocrysts.

Original languageEnglish
Pages (from-to)237-257
Number of pages21
JournalJournal of Volcanology and Geothermal Research
Volume143
Issue number4
DOIs
Publication statusPublished - May 30 2005

Fingerprint

Central Europe
petrogenesis
Trace Elements
trace elements
igneous rocks
ignimbrite
Minerals
glass
Rocks
minerals
trace element
rocks
Glass
mineral
basin
rock
Inductively coupled plasma mass spectrometry
inductively coupled plasma mass spectrometry
Laser ablation
plagioclase

Keywords

  • Glass shard
  • Ignimbrite
  • LA-ICP-MS
  • Pannonian Basin
  • Petrogenesis
  • Silicic volcanism
  • Tephrochronology

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Cite this

@article{8a8b3b78e517456e81d294d492801067,
title = "Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: In situ trace element data of glass shards and mineral chemical constraints",
abstract = "The Neogene volcanism of the Carpathian-Pannonian Region, Eastern-Central Europe started with repeated explosive eruption of silicic magmas. Volcanic products consist mostly of non-welded and partially to densely welded ignimbrites, which cover large areas in the Pannonian Basin. Since this volcanism occurred during a long time interval, from 21 Ma to 13.5 Ma ago, these pyroclastic deposits have great stratigraphic importance, as well as providing valuable information about petrogenetic processes during the formation of the back-arc basin area. In this study, we used in situ trace element data of glasses (glass shards, pumice and fiamme glass) determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), combined with microprobe geochemical data of the main mineral phases (plagioclase, biotite), to correlate the scattered outcrops of the ignimbrite units. Based on these data, we distinguished four ignimbrite units in the B{\"u}kkalja Volcanic Field, Northern Pannonian Basin. Each of these units is characterized by specific geochemical fingerprints. Thorium, Nb, Y and the rare earth elements are the most effective discriminator elements in glasses. The modal composition of mineral phases (occurrence or lack of certain minerals) and chemistry of plagioclases and biotites are also good correlation tools, especially the Fe, Mg and Ti contents of biotites. We suggest that these correlation criteria, particularly the grain-specific LA-ICP-MS data, could be effectively used also in other ignimbrite fields and in wider tephrochronological studies. The in situ trace element composition of glasses, representing the liquid part of the erupted magma, can be also used to constrain the petrogenesis of the rhyolitic magmas. Trace element ratios such as La/Nb, La/Y and Th/Nb suggest the importance of minor (e.g., hornblende and ilmenite) and accessory (e.g., zircon, allanite) minerals controlling the composition of the erupted melt. Rhyolitic magmas probably evolved from metaluminous andesitic parental melts via fractional crystallization. Syn-eruptive magma mingling was detected in the genesis of the Middle Ignimbrite Unit, based on the strong intra-sample geochemical variation both in the glasses and in the phenocrysts.",
keywords = "Glass shard, Ignimbrite, LA-ICP-MS, Pannonian Basin, Petrogenesis, Silicic volcanism, Tephrochronology",
author = "S. Harangi and Mason, {Paul R D} and R{\'e}ka Luk{\'a}cs",
year = "2005",
month = "5",
day = "30",
doi = "10.1016/j.jvolgeores.2004.11.012",
language = "English",
volume = "143",
pages = "237--257",
journal = "Journal of Volcanology and Geothermal Research",
issn = "0377-0273",
publisher = "Elsevier",
number = "4",

}

TY - JOUR

T1 - Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe

T2 - In situ trace element data of glass shards and mineral chemical constraints

AU - Harangi, S.

AU - Mason, Paul R D

AU - Lukács, Réka

PY - 2005/5/30

Y1 - 2005/5/30

N2 - The Neogene volcanism of the Carpathian-Pannonian Region, Eastern-Central Europe started with repeated explosive eruption of silicic magmas. Volcanic products consist mostly of non-welded and partially to densely welded ignimbrites, which cover large areas in the Pannonian Basin. Since this volcanism occurred during a long time interval, from 21 Ma to 13.5 Ma ago, these pyroclastic deposits have great stratigraphic importance, as well as providing valuable information about petrogenetic processes during the formation of the back-arc basin area. In this study, we used in situ trace element data of glasses (glass shards, pumice and fiamme glass) determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), combined with microprobe geochemical data of the main mineral phases (plagioclase, biotite), to correlate the scattered outcrops of the ignimbrite units. Based on these data, we distinguished four ignimbrite units in the Bükkalja Volcanic Field, Northern Pannonian Basin. Each of these units is characterized by specific geochemical fingerprints. Thorium, Nb, Y and the rare earth elements are the most effective discriminator elements in glasses. The modal composition of mineral phases (occurrence or lack of certain minerals) and chemistry of plagioclases and biotites are also good correlation tools, especially the Fe, Mg and Ti contents of biotites. We suggest that these correlation criteria, particularly the grain-specific LA-ICP-MS data, could be effectively used also in other ignimbrite fields and in wider tephrochronological studies. The in situ trace element composition of glasses, representing the liquid part of the erupted magma, can be also used to constrain the petrogenesis of the rhyolitic magmas. Trace element ratios such as La/Nb, La/Y and Th/Nb suggest the importance of minor (e.g., hornblende and ilmenite) and accessory (e.g., zircon, allanite) minerals controlling the composition of the erupted melt. Rhyolitic magmas probably evolved from metaluminous andesitic parental melts via fractional crystallization. Syn-eruptive magma mingling was detected in the genesis of the Middle Ignimbrite Unit, based on the strong intra-sample geochemical variation both in the glasses and in the phenocrysts.

AB - The Neogene volcanism of the Carpathian-Pannonian Region, Eastern-Central Europe started with repeated explosive eruption of silicic magmas. Volcanic products consist mostly of non-welded and partially to densely welded ignimbrites, which cover large areas in the Pannonian Basin. Since this volcanism occurred during a long time interval, from 21 Ma to 13.5 Ma ago, these pyroclastic deposits have great stratigraphic importance, as well as providing valuable information about petrogenetic processes during the formation of the back-arc basin area. In this study, we used in situ trace element data of glasses (glass shards, pumice and fiamme glass) determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), combined with microprobe geochemical data of the main mineral phases (plagioclase, biotite), to correlate the scattered outcrops of the ignimbrite units. Based on these data, we distinguished four ignimbrite units in the Bükkalja Volcanic Field, Northern Pannonian Basin. Each of these units is characterized by specific geochemical fingerprints. Thorium, Nb, Y and the rare earth elements are the most effective discriminator elements in glasses. The modal composition of mineral phases (occurrence or lack of certain minerals) and chemistry of plagioclases and biotites are also good correlation tools, especially the Fe, Mg and Ti contents of biotites. We suggest that these correlation criteria, particularly the grain-specific LA-ICP-MS data, could be effectively used also in other ignimbrite fields and in wider tephrochronological studies. The in situ trace element composition of glasses, representing the liquid part of the erupted magma, can be also used to constrain the petrogenesis of the rhyolitic magmas. Trace element ratios such as La/Nb, La/Y and Th/Nb suggest the importance of minor (e.g., hornblende and ilmenite) and accessory (e.g., zircon, allanite) minerals controlling the composition of the erupted melt. Rhyolitic magmas probably evolved from metaluminous andesitic parental melts via fractional crystallization. Syn-eruptive magma mingling was detected in the genesis of the Middle Ignimbrite Unit, based on the strong intra-sample geochemical variation both in the glasses and in the phenocrysts.

KW - Glass shard

KW - Ignimbrite

KW - LA-ICP-MS

KW - Pannonian Basin

KW - Petrogenesis

KW - Silicic volcanism

KW - Tephrochronology

UR - http://www.scopus.com/inward/record.url?scp=20444462712&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=20444462712&partnerID=8YFLogxK

U2 - 10.1016/j.jvolgeores.2004.11.012

DO - 10.1016/j.jvolgeores.2004.11.012

M3 - Article

VL - 143

SP - 237

EP - 257

JO - Journal of Volcanology and Geothermal Research

JF - Journal of Volcanology and Geothermal Research

SN - 0377-0273

IS - 4

ER -