### Abstract

We consider sequences of graphs (Gn) and define various notions of convergence related to these sequences including "left-convergence," defined in terms of the densities of homomorphisms from small graphs into G _{n}, and "right-convergence," defined in terms of the densities of homomorphisms from G _{n} into small graphs. We show that right-convergence is equivalent to left-convergence, both for simple graphs G _{n}, and for graphs G _{n} with nontrivial nodeweights and edgeweights. Other equivalent conditions for convergence are given in terms of fundamental notions from combinatorics, such as maximum cuts and Szemerédi partitions, and fundamental notions from statistical physics, like energies and free energies. We thereby relate local and global properties of graph sequences. Quantitative forms of these results express the relationships among different measures of similarity of large graphs.

Original language | English |
---|---|

Pages (from-to) | 151-219 |

Number of pages | 69 |

Journal | Annals of Mathematics |

Volume | 176 |

Issue number | 1 |

DOIs | |

Publication status | Published - Jul 1 2012 |

### ASJC Scopus subject areas

- Statistics and Probability
- Statistics, Probability and Uncertainty

## Fingerprint Dive into the research topics of 'Convergent sequences of dense graphs II. Multiway cuts and statistical physics'. Together they form a unique fingerprint.

## Cite this

*Annals of Mathematics*,

*176*(1), 151-219. https://doi.org/10.4007/annals.2012.176.1.2