Contrasting the functional properties of GABAergic axon terminals with single and multiple synapses in the thalamus

Nicolas Wanaverbecq, Ágnes L. Bodor, Hajnalka Bokor, Andrea Slézia, Anita Lüthi, László Acsády

Research output: Contribution to journalArticle

30 Citations (Scopus)


Diverse sources of GABAergic inhibition are a major feature of cortical networks, but distinct inhibitory input systems have not been systematically characterized in the thalamus. Here,wecontrasted the properties of two independent GABAergic pathways in the posterior thalamic nucleus of rat, one input from the reticular thalamic nucleus (nRT), and one " extrareticular" input from the anterior pretectal nucleus (APT). The vast majority of nRT-thalamic terminals formed single synapses per postsynaptic target and innervated thin distal dendrites of relay cells. In contrast, single APT-thalamic terminals formed synaptic contacts exclusively via multiple, closely spaced synapses on thick relay cell dendrites. Quantal analysis demonstrated that the two inputs displayed comparable quantal amplitudes, release probabilities, and multiple release sites. The morphological and physiological data together indicated multiple, single-site contacts for nRT and multisite contacts for APT axons. The contrasting synaptic arrangements of the two pathways were paralleled by different short-term plasticities. The multisite APT-thalamic pathway showed larger charge transfer during 50 -100 Hz stimulation compared with the nRT pathway and a greater persistent inhibition accruing during stimulation trains. Our results demonstrate that the two inhibitory systems are morpho-functionally distinct and suggest and that multisite GABAergic terminals are tailored for maintained synaptic inhibition even at high presynaptic firing rates. These data explain the efficacy of extrareticular inhibition in timing relay cell activity in sensory and motor thalamic nuclei. Finally, based on the classic nomenclature and the difference between reticular and extrareticular terminals, we define a novel, multisite GABAergic terminal type (F3) in the thalamus.

Original languageEnglish
Pages (from-to)11848-11861
Number of pages14
JournalJournal of Neuroscience
Issue number46
Publication statusPublished - Nov 12 2008


  • Axon terminal
  • Barrel
  • Basal ganglia
  • GABA
  • Reticular nucleus
  • Synapse

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Contrasting the functional properties of GABAergic axon terminals with single and multiple synapses in the thalamus'. Together they form a unique fingerprint.

  • Cite this