### Abstract

For every integer N, we explicitly construct a subset of residues mod N of size(log N)^{o(1)} which is nearly uniformly distributed in every arithmetic progression modulo N.

Original language | English |
---|---|

Pages (from-to) | 513-518 |

Number of pages | 6 |

Journal | Combinatorics Probability and Computing |

Volume | 2 |

Issue number | 4 |

DOIs | |

Publication status | Published - 1993 |

### Fingerprint

### ASJC Scopus subject areas

- Applied Mathematics
- Theoretical Computer Science
- Statistics and Probability
- Computational Theory and Mathematics

### Cite this

*Combinatorics Probability and Computing*,

*2*(4), 513-518. https://doi.org/10.1017/S0963548300000870

**Constructing Small Sets that are Uniform in Arithmetic Progressions.** / Razborov, A.; Szemerédi, E.; Wigderson, A.

Research output: Contribution to journal › Article

*Combinatorics Probability and Computing*, vol. 2, no. 4, pp. 513-518. https://doi.org/10.1017/S0963548300000870

}

TY - JOUR

T1 - Constructing Small Sets that are Uniform in Arithmetic Progressions

AU - Razborov, A.

AU - Szemerédi, E.

AU - Wigderson, A.

PY - 1993

Y1 - 1993

N2 - For every integer N, we explicitly construct a subset of residues mod N of size(log N)o(1) which is nearly uniformly distributed in every arithmetic progression modulo N.

AB - For every integer N, we explicitly construct a subset of residues mod N of size(log N)o(1) which is nearly uniformly distributed in every arithmetic progression modulo N.

UR - http://www.scopus.com/inward/record.url?scp=84971698089&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84971698089&partnerID=8YFLogxK

U2 - 10.1017/S0963548300000870

DO - 10.1017/S0963548300000870

M3 - Article

AN - SCOPUS:84971698089

VL - 2

SP - 513

EP - 518

JO - Combinatorics Probability and Computing

JF - Combinatorics Probability and Computing

SN - 0963-5483

IS - 4

ER -