Constructing Small Sets that are Uniform in Arithmetic Progressions

A. Razborov, E. Szemerédi, A. Wigderson

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

For every integer N, we explicitly construct a subset of residues mod N of size(log N)o(1) which is nearly uniformly distributed in every arithmetic progression modulo N.

Original languageEnglish
Pages (from-to)513-518
Number of pages6
JournalCombinatorics Probability and Computing
Volume2
Issue number4
DOIs
Publication statusPublished - 1993

Fingerprint

Arithmetic sequence
Modulo
Integer
Subset

ASJC Scopus subject areas

  • Applied Mathematics
  • Theoretical Computer Science
  • Statistics and Probability
  • Computational Theory and Mathematics

Cite this

Constructing Small Sets that are Uniform in Arithmetic Progressions. / Razborov, A.; Szemerédi, E.; Wigderson, A.

In: Combinatorics Probability and Computing, Vol. 2, No. 4, 1993, p. 513-518.

Research output: Contribution to journalArticle

@article{30a71f58211b4e069cd3d33cf0743354,
title = "Constructing Small Sets that are Uniform in Arithmetic Progressions",
abstract = "For every integer N, we explicitly construct a subset of residues mod N of size(log N)o(1) which is nearly uniformly distributed in every arithmetic progression modulo N.",
author = "A. Razborov and E. Szemer{\'e}di and A. Wigderson",
year = "1993",
doi = "10.1017/S0963548300000870",
language = "English",
volume = "2",
pages = "513--518",
journal = "Combinatorics Probability and Computing",
issn = "0963-5483",
publisher = "Cambridge University Press",
number = "4",

}

TY - JOUR

T1 - Constructing Small Sets that are Uniform in Arithmetic Progressions

AU - Razborov, A.

AU - Szemerédi, E.

AU - Wigderson, A.

PY - 1993

Y1 - 1993

N2 - For every integer N, we explicitly construct a subset of residues mod N of size(log N)o(1) which is nearly uniformly distributed in every arithmetic progression modulo N.

AB - For every integer N, we explicitly construct a subset of residues mod N of size(log N)o(1) which is nearly uniformly distributed in every arithmetic progression modulo N.

UR - http://www.scopus.com/inward/record.url?scp=84971698089&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84971698089&partnerID=8YFLogxK

U2 - 10.1017/S0963548300000870

DO - 10.1017/S0963548300000870

M3 - Article

AN - SCOPUS:84971698089

VL - 2

SP - 513

EP - 518

JO - Combinatorics Probability and Computing

JF - Combinatorics Probability and Computing

SN - 0963-5483

IS - 4

ER -