Complex forming competition and in-vitro toxicity studies on the applicability of di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) as a metal chelator

Anikó Gaál, Gábor Orgován, Zsófia Polgári, Andrea Réti, V. Mihucz, Sz. Bősze, N. Szoboszlai, Christina Streli

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) is a potential candidate in chelation therapy as an iron chelator. This study showed that a combined treatment with 2 μM easily available Fe(II), Cu(II) and Zn(II) each and 5 μM Dp44mT on eight different cancer cell lines resulted in a 10-40-fold increase in the intracellular Cu content compared to control samples. The uptake of Cu and Cu-dependent cytotoxicity strictly depend on the Cu concentration of the culture medium. Even as low concentration of Dp44mT as 0.1 μM can transport high amounts of copper inside the cells. The Cu accumulation and toxicity through Dp44mT can hardly be influenced by Fe. Copper uptake and toxicity triggered by 2 μM extracellular Cu(II) and 5 μM Dp44mT could not be influenced by Fe(II) extracellular concentrations even 50-times higher than that of Cu(II). A 50-times higher Co(II) extracellular concentration hindered the Cu(II) uptake almost completely and a 10-times higher Co(II) concentration already decreased the Dp44mT-mediated Cu toxicity. Conditional complex stability constant determinations for Dp44mT with Cu(II), Co(II), Fe(II), Ni(II) and Zn(II) revealed that the metal-to-ligand ratio is 1:1 in [Cu(II)Dp44mT] complex, while for Co(II), Fe(II) and Ni(II) is 1:2. The highest stability constant was obtained for Cu(II) (lg β = 7.08 ± 0.05) and Co(II) (lg β2 = 12.47 ± 0.07). According to our results, Dp44mT in combination with Cu is highly toxic in vitro. Therefore, the use of Dp44mT as an iron chelator is limited if biologically available Cu is also present even at low concentrations.

Original languageEnglish
Pages (from-to)52-58
Number of pages7
JournalJournal of Inorganic Biochemistry
Volume130
Issue number1
DOIs
Publication statusPublished - 2014

Fingerprint

Chelating Agents
Toxicity
Metals
Copper
Iron
di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone
In Vitro Techniques
Chelation Therapy
Poisons
Cytotoxicity
Chelation
Culture Media
Cells
Ligands
Cell Line

Keywords

  • Cancer therapy
  • Cobalt
  • Copper poisoning
  • Iron chelator
  • Metal transport
  • TXRF

ASJC Scopus subject areas

  • Biochemistry
  • Inorganic Chemistry

Cite this

Complex forming competition and in-vitro toxicity studies on the applicability of di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) as a metal chelator. / Gaál, Anikó; Orgován, Gábor; Polgári, Zsófia; Réti, Andrea; Mihucz, V.; Bősze, Sz.; Szoboszlai, N.; Streli, Christina.

In: Journal of Inorganic Biochemistry, Vol. 130, No. 1, 2014, p. 52-58.

Research output: Contribution to journalArticle

@article{ac264981f82041718111a1a3a3122368,
title = "Complex forming competition and in-vitro toxicity studies on the applicability of di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) as a metal chelator",
abstract = "Di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) is a potential candidate in chelation therapy as an iron chelator. This study showed that a combined treatment with 2 μM easily available Fe(II), Cu(II) and Zn(II) each and 5 μM Dp44mT on eight different cancer cell lines resulted in a 10-40-fold increase in the intracellular Cu content compared to control samples. The uptake of Cu and Cu-dependent cytotoxicity strictly depend on the Cu concentration of the culture medium. Even as low concentration of Dp44mT as 0.1 μM can transport high amounts of copper inside the cells. The Cu accumulation and toxicity through Dp44mT can hardly be influenced by Fe. Copper uptake and toxicity triggered by 2 μM extracellular Cu(II) and 5 μM Dp44mT could not be influenced by Fe(II) extracellular concentrations even 50-times higher than that of Cu(II). A 50-times higher Co(II) extracellular concentration hindered the Cu(II) uptake almost completely and a 10-times higher Co(II) concentration already decreased the Dp44mT-mediated Cu toxicity. Conditional complex stability constant determinations for Dp44mT with Cu(II), Co(II), Fe(II), Ni(II) and Zn(II) revealed that the metal-to-ligand ratio is 1:1 in [Cu(II)Dp44mT] complex, while for Co(II), Fe(II) and Ni(II) is 1:2. The highest stability constant was obtained for Cu(II) (lg β = 7.08 ± 0.05) and Co(II) (lg β2 = 12.47 ± 0.07). According to our results, Dp44mT in combination with Cu is highly toxic in vitro. Therefore, the use of Dp44mT as an iron chelator is limited if biologically available Cu is also present even at low concentrations.",
keywords = "Cancer therapy, Cobalt, Copper poisoning, Iron chelator, Metal transport, TXRF",
author = "Anik{\'o} Ga{\'a}l and G{\'a}bor Orgov{\'a}n and Zs{\'o}fia Polg{\'a}ri and Andrea R{\'e}ti and V. Mihucz and Sz. Bősze and N. Szoboszlai and Christina Streli",
year = "2014",
doi = "10.1016/j.jinorgbio.2013.09.016",
language = "English",
volume = "130",
pages = "52--58",
journal = "Journal of Inorganic Biochemistry",
issn = "0162-0134",
publisher = "Elsevier Inc.",
number = "1",

}

TY - JOUR

T1 - Complex forming competition and in-vitro toxicity studies on the applicability of di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) as a metal chelator

AU - Gaál, Anikó

AU - Orgován, Gábor

AU - Polgári, Zsófia

AU - Réti, Andrea

AU - Mihucz, V.

AU - Bősze, Sz.

AU - Szoboszlai, N.

AU - Streli, Christina

PY - 2014

Y1 - 2014

N2 - Di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) is a potential candidate in chelation therapy as an iron chelator. This study showed that a combined treatment with 2 μM easily available Fe(II), Cu(II) and Zn(II) each and 5 μM Dp44mT on eight different cancer cell lines resulted in a 10-40-fold increase in the intracellular Cu content compared to control samples. The uptake of Cu and Cu-dependent cytotoxicity strictly depend on the Cu concentration of the culture medium. Even as low concentration of Dp44mT as 0.1 μM can transport high amounts of copper inside the cells. The Cu accumulation and toxicity through Dp44mT can hardly be influenced by Fe. Copper uptake and toxicity triggered by 2 μM extracellular Cu(II) and 5 μM Dp44mT could not be influenced by Fe(II) extracellular concentrations even 50-times higher than that of Cu(II). A 50-times higher Co(II) extracellular concentration hindered the Cu(II) uptake almost completely and a 10-times higher Co(II) concentration already decreased the Dp44mT-mediated Cu toxicity. Conditional complex stability constant determinations for Dp44mT with Cu(II), Co(II), Fe(II), Ni(II) and Zn(II) revealed that the metal-to-ligand ratio is 1:1 in [Cu(II)Dp44mT] complex, while for Co(II), Fe(II) and Ni(II) is 1:2. The highest stability constant was obtained for Cu(II) (lg β = 7.08 ± 0.05) and Co(II) (lg β2 = 12.47 ± 0.07). According to our results, Dp44mT in combination with Cu is highly toxic in vitro. Therefore, the use of Dp44mT as an iron chelator is limited if biologically available Cu is also present even at low concentrations.

AB - Di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) is a potential candidate in chelation therapy as an iron chelator. This study showed that a combined treatment with 2 μM easily available Fe(II), Cu(II) and Zn(II) each and 5 μM Dp44mT on eight different cancer cell lines resulted in a 10-40-fold increase in the intracellular Cu content compared to control samples. The uptake of Cu and Cu-dependent cytotoxicity strictly depend on the Cu concentration of the culture medium. Even as low concentration of Dp44mT as 0.1 μM can transport high amounts of copper inside the cells. The Cu accumulation and toxicity through Dp44mT can hardly be influenced by Fe. Copper uptake and toxicity triggered by 2 μM extracellular Cu(II) and 5 μM Dp44mT could not be influenced by Fe(II) extracellular concentrations even 50-times higher than that of Cu(II). A 50-times higher Co(II) extracellular concentration hindered the Cu(II) uptake almost completely and a 10-times higher Co(II) concentration already decreased the Dp44mT-mediated Cu toxicity. Conditional complex stability constant determinations for Dp44mT with Cu(II), Co(II), Fe(II), Ni(II) and Zn(II) revealed that the metal-to-ligand ratio is 1:1 in [Cu(II)Dp44mT] complex, while for Co(II), Fe(II) and Ni(II) is 1:2. The highest stability constant was obtained for Cu(II) (lg β = 7.08 ± 0.05) and Co(II) (lg β2 = 12.47 ± 0.07). According to our results, Dp44mT in combination with Cu is highly toxic in vitro. Therefore, the use of Dp44mT as an iron chelator is limited if biologically available Cu is also present even at low concentrations.

KW - Cancer therapy

KW - Cobalt

KW - Copper poisoning

KW - Iron chelator

KW - Metal transport

KW - TXRF

UR - http://www.scopus.com/inward/record.url?scp=84886121295&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84886121295&partnerID=8YFLogxK

U2 - 10.1016/j.jinorgbio.2013.09.016

DO - 10.1016/j.jinorgbio.2013.09.016

M3 - Article

C2 - 24176919

AN - SCOPUS:84886121295

VL - 130

SP - 52

EP - 58

JO - Journal of Inorganic Biochemistry

JF - Journal of Inorganic Biochemistry

SN - 0162-0134

IS - 1

ER -