Comparison of passive and active biomechanical properties of human cervical and leg veins

G. Gosi, A. Monori-Kiss, G. Nádasy, A. Durkó, A. Tokés, E. Monos, G. Acsády

Research output: Contribution to journalArticle

1 Citation (Scopus)


Aim. The aim of this study was to evaluate and compare passive and active biomechanical properties of human superficial veins exposed in vivo to different orthostatic stresses. Methods. Superficial veins from jugular and saphenous regions were studied (11 segments each). Digitalized pressure-diameter curves were recorded in Krebs-Ringer solution, and after adnunistration of 10-5M norepmephrine and 10-5M acetylcholine. Calcium-free solution was used to determine passive biomechanical properties. Similar tissue samples were collected for histochemistry. Resorcin-fuchsin stainings and immuno-histochemistry for smooth muscle actin were used. Results. The outer radius of the relaxed samples was identical. Leg vein walls were thicker in Krebs-Ringer solution (110±11 vs. 84±7 μm at 30 mmHg). Isobaric wall stress was significantly higher in cervical veins. The significant differences in incremental distensibilities and elastic moduli were dependent on pressure level and smooth muscle tone. Spontaneous tone and norepinephrine induced contractions were significantly higher in leg veins (at 30 mmHg 18.3±4.1 vs. 5.6±1.8% and 37.6± 4.5 vs. 11.2±4.3 %, respectively). Endothelial dilation was larger in cervical vein segments (3.8±0.9% vs. 1.8±0.5%). Resorcin-fuchsin and smooth muscle actin staining structures were more abundant in leg veins. Conclusion. Comparing active and passive biomechanical properties of human veins affected chronically by different orthostatic loading, we found several quantitative differences that reflect the physiological adaptation mechanisms to long-term gravitational stress.Grant: Funding. - This study was supported by the Hungarian National Grant (OTKA 32019, 42670) and the Hungarian Kidney Foundation.

Original languageEnglish
Pages (from-to)348-356
Number of pages9
JournalInternational Angiology
Issue number4
Publication statusPublished - Aug 2014


  • Biomechanics
  • Dilatation, pathologic
  • Endothelium
  • Veins

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Fingerprint Dive into the research topics of 'Comparison of passive and active biomechanical properties of human cervical and leg veins'. Together they form a unique fingerprint.

  • Cite this