Comparing genomes in terms of protein structure: Surveys of a finite parts list

Mark Gerstein, Hedi Hegyi

Research output: Contribution to journalArticle

70 Citations (Scopus)

Abstract

We give an overview of the emerging field of structural genomics, describing how genomes can be compared in terms of protein structure. As the number of genes in a genome and the total number of protein folds are both quite limited, these comparisons take the form of surveys of a finite parts list, similar in respects to demographic censuses. Fold surveys have many similarities with other whole-genome characterizations, e.g. analyses of motifs or pathways. However, structure has a number of aspects that make it particularly suitable for comparing genomes, namely the way it allows for the precise definition of a basic protein module and the fact that it has a better defined relationship to sequence similarity than does protein function. An essential requirement for a structure survey is a library of folds, which groups the known structures into 'fold families'. This library can be built up automatically using a structure comparison program, and we described how important objective statistical measures are for assessing similarities within the library and between the library and genome sequences. After building the library, one can use it to count the number of folds in genomes, expressing the results in the form of Venn diagrams and 'top-10' statistics for shared and common folds. Depending on the counting methodology employed, these statistics can reflect different aspects of the genome, such as the amount of internal duplication or gene expression. Previous analyses have shown that the common folds shared between very different microorganisms, i.e. in different kingdoms, have a remarkably similar structure, being comprised of repeated strand-helix-strand super-secondary structure units. A major difficulty with this sort of 'fold-counting' is that only a small subset of the structures in a complete genome are currently known and this subset is prone to sampling bias. One way of overcoming biases is through structure prediction, which can be applied uniformly and comprehensively to a whole genome. Various investigators have, in fact, already applied many of the existing techniques for predicting secondary structure and transmembrane (TM) helices to the recently sequenced genomes. The results have been consistent: microbial genomes have similar fractions of strands and helices even though they have significantly different amino acid composition. The fraction of membrane proteins with a given number of TM helices falls off rapidly with more TM elements, approximately according to a Zipf law. This latter finding indicates that there is no preference for the highly studied 7-TM proteins in microbial genomes. Continuously updated tables and further information pertinent to this review are available over the web at http://bioinfo.mbb.yale.edu/genome. Copyright (C) 1998 Federation of European Microbiological Societies.

Original languageEnglish
Pages (from-to)277-304
Number of pages28
JournalFEMS Microbiology Reviews
Volume22
Issue number4
DOIs
Publication statusPublished - Oct 1998

Keywords

  • Bioinformatics
  • Databank census
  • Protein fold

ASJC Scopus subject areas

  • Microbiology
  • Infectious Diseases

Fingerprint Dive into the research topics of 'Comparing genomes in terms of protein structure: Surveys of a finite parts list'. Together they form a unique fingerprint.

  • Cite this