Comparative effects on intestinal absorption in situ by P-glycoprotein-modifying HIV protease inhibitors

Martin Richter, N. Gyémánt, J. Molnár, Andreas Hilgeroth

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Purpose. P-glycoprotein (P-gp) is made responsible for the limited oral bioavailability of P-gp substrates like peptidic HIV protease inhibitors (PIs). With respect to combined application of two PIs in antiretroviral regimes, we first investigated the influences on intestinal saquinavir uptake using different PIs in in situ perfusion studies. Methods. Perfusion experiments were carried out in three intestinal segments with P-gp substrates talinolol and saquinavir using fixed concentrations of PIs and with each varying concentrations in the jejunum and ileum. Furthermore, cellular uptake of fluorescent P-gp substrate rhodamine-123 and MRP-substrate carboxyfluorescein has each been quantified in P-gp and MRP-expressing cells by flow cytometry under co-adminstration of PIs. Results. Increase of calculated permeabilities of P-gp-specific substrate talinolol was found under co-administration of both PIs, ritonavir and H17, with highest absorption rates in the ileal and colon segment. H17 proved to be a better P-gp inhibitor than ritonavir by resulting IC 50 values and also in the cellular uptake of rhodamine. Similar increases of permeabilities in ileum and colon have also been found for saquinavir as P-gp as well as MRP-substrate with differences in the jejunal uptake, which was found higher for H17. Additional MRP-inhibitory activities of H17 were proved by increasing cellular uptake rates of carboxyfluorescein in MRP-expressing cells. Conclusions. The investigated PIs were characterized as effective P-gp inhibitors in the intestinal absorption of P-gp substrates. H17 showed MRP-inhibitory effects that also favor intestinal drug absorption of corresponding substrates. With respect to combined therapeutic application of PIs, compounds like H17 raise hopes for improved bioavailability of poorly absorbed compounds.

Original languageEnglish
Pages (from-to)1862-1866
Number of pages5
JournalPharmaceutical Research
Volume21
Issue number10
DOIs
Publication statusPublished - Oct 2004

Fingerprint

HIV Protease Inhibitors
Intestinal Absorption
P-Glycoprotein
Protease Inhibitors
talinolol
Substrates
Saquinavir
Ritonavir
Ileum
Biological Availability
Permeability
Colon
Perfusion
Rhodamine 123
Rhodamines
Flow cytometry
Jejunum
Flow Cytometry

Keywords

  • absorption
  • HIV protease inhibitor
  • intestine
  • P-glycoprotein
  • perfusion

ASJC Scopus subject areas

  • Chemistry(all)
  • Pharmaceutical Science
  • Pharmacology

Cite this

Comparative effects on intestinal absorption in situ by P-glycoprotein-modifying HIV protease inhibitors. / Richter, Martin; Gyémánt, N.; Molnár, J.; Hilgeroth, Andreas.

In: Pharmaceutical Research, Vol. 21, No. 10, 10.2004, p. 1862-1866.

Research output: Contribution to journalArticle

@article{4b100045a848423ca069b14a0f9fd38c,
title = "Comparative effects on intestinal absorption in situ by P-glycoprotein-modifying HIV protease inhibitors",
abstract = "Purpose. P-glycoprotein (P-gp) is made responsible for the limited oral bioavailability of P-gp substrates like peptidic HIV protease inhibitors (PIs). With respect to combined application of two PIs in antiretroviral regimes, we first investigated the influences on intestinal saquinavir uptake using different PIs in in situ perfusion studies. Methods. Perfusion experiments were carried out in three intestinal segments with P-gp substrates talinolol and saquinavir using fixed concentrations of PIs and with each varying concentrations in the jejunum and ileum. Furthermore, cellular uptake of fluorescent P-gp substrate rhodamine-123 and MRP-substrate carboxyfluorescein has each been quantified in P-gp and MRP-expressing cells by flow cytometry under co-adminstration of PIs. Results. Increase of calculated permeabilities of P-gp-specific substrate talinolol was found under co-administration of both PIs, ritonavir and H17, with highest absorption rates in the ileal and colon segment. H17 proved to be a better P-gp inhibitor than ritonavir by resulting IC 50 values and also in the cellular uptake of rhodamine. Similar increases of permeabilities in ileum and colon have also been found for saquinavir as P-gp as well as MRP-substrate with differences in the jejunal uptake, which was found higher for H17. Additional MRP-inhibitory activities of H17 were proved by increasing cellular uptake rates of carboxyfluorescein in MRP-expressing cells. Conclusions. The investigated PIs were characterized as effective P-gp inhibitors in the intestinal absorption of P-gp substrates. H17 showed MRP-inhibitory effects that also favor intestinal drug absorption of corresponding substrates. With respect to combined therapeutic application of PIs, compounds like H17 raise hopes for improved bioavailability of poorly absorbed compounds.",
keywords = "absorption, HIV protease inhibitor, intestine, P-glycoprotein, perfusion",
author = "Martin Richter and N. Gy{\'e}m{\'a}nt and J. Moln{\'a}r and Andreas Hilgeroth",
year = "2004",
month = "10",
doi = "10.1023/B:PHAM.0000045240.81664.be",
language = "English",
volume = "21",
pages = "1862--1866",
journal = "Pharmaceutical Research",
issn = "0724-8741",
publisher = "Springer New York",
number = "10",

}

TY - JOUR

T1 - Comparative effects on intestinal absorption in situ by P-glycoprotein-modifying HIV protease inhibitors

AU - Richter, Martin

AU - Gyémánt, N.

AU - Molnár, J.

AU - Hilgeroth, Andreas

PY - 2004/10

Y1 - 2004/10

N2 - Purpose. P-glycoprotein (P-gp) is made responsible for the limited oral bioavailability of P-gp substrates like peptidic HIV protease inhibitors (PIs). With respect to combined application of two PIs in antiretroviral regimes, we first investigated the influences on intestinal saquinavir uptake using different PIs in in situ perfusion studies. Methods. Perfusion experiments were carried out in three intestinal segments with P-gp substrates talinolol and saquinavir using fixed concentrations of PIs and with each varying concentrations in the jejunum and ileum. Furthermore, cellular uptake of fluorescent P-gp substrate rhodamine-123 and MRP-substrate carboxyfluorescein has each been quantified in P-gp and MRP-expressing cells by flow cytometry under co-adminstration of PIs. Results. Increase of calculated permeabilities of P-gp-specific substrate talinolol was found under co-administration of both PIs, ritonavir and H17, with highest absorption rates in the ileal and colon segment. H17 proved to be a better P-gp inhibitor than ritonavir by resulting IC 50 values and also in the cellular uptake of rhodamine. Similar increases of permeabilities in ileum and colon have also been found for saquinavir as P-gp as well as MRP-substrate with differences in the jejunal uptake, which was found higher for H17. Additional MRP-inhibitory activities of H17 were proved by increasing cellular uptake rates of carboxyfluorescein in MRP-expressing cells. Conclusions. The investigated PIs were characterized as effective P-gp inhibitors in the intestinal absorption of P-gp substrates. H17 showed MRP-inhibitory effects that also favor intestinal drug absorption of corresponding substrates. With respect to combined therapeutic application of PIs, compounds like H17 raise hopes for improved bioavailability of poorly absorbed compounds.

AB - Purpose. P-glycoprotein (P-gp) is made responsible for the limited oral bioavailability of P-gp substrates like peptidic HIV protease inhibitors (PIs). With respect to combined application of two PIs in antiretroviral regimes, we first investigated the influences on intestinal saquinavir uptake using different PIs in in situ perfusion studies. Methods. Perfusion experiments were carried out in three intestinal segments with P-gp substrates talinolol and saquinavir using fixed concentrations of PIs and with each varying concentrations in the jejunum and ileum. Furthermore, cellular uptake of fluorescent P-gp substrate rhodamine-123 and MRP-substrate carboxyfluorescein has each been quantified in P-gp and MRP-expressing cells by flow cytometry under co-adminstration of PIs. Results. Increase of calculated permeabilities of P-gp-specific substrate talinolol was found under co-administration of both PIs, ritonavir and H17, with highest absorption rates in the ileal and colon segment. H17 proved to be a better P-gp inhibitor than ritonavir by resulting IC 50 values and also in the cellular uptake of rhodamine. Similar increases of permeabilities in ileum and colon have also been found for saquinavir as P-gp as well as MRP-substrate with differences in the jejunal uptake, which was found higher for H17. Additional MRP-inhibitory activities of H17 were proved by increasing cellular uptake rates of carboxyfluorescein in MRP-expressing cells. Conclusions. The investigated PIs were characterized as effective P-gp inhibitors in the intestinal absorption of P-gp substrates. H17 showed MRP-inhibitory effects that also favor intestinal drug absorption of corresponding substrates. With respect to combined therapeutic application of PIs, compounds like H17 raise hopes for improved bioavailability of poorly absorbed compounds.

KW - absorption

KW - HIV protease inhibitor

KW - intestine

KW - P-glycoprotein

KW - perfusion

UR - http://www.scopus.com/inward/record.url?scp=6344279785&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=6344279785&partnerID=8YFLogxK

U2 - 10.1023/B:PHAM.0000045240.81664.be

DO - 10.1023/B:PHAM.0000045240.81664.be

M3 - Article

C2 - 15553233

AN - SCOPUS:6344279785

VL - 21

SP - 1862

EP - 1866

JO - Pharmaceutical Research

JF - Pharmaceutical Research

SN - 0724-8741

IS - 10

ER -