Comparative cell biological study of in vitro antitumor and antimetastatic activity on melanoma cells of GnRH-III-containing conjugates modified with short-chain fatty acids

Eszter Lajkó, Sarah Spring, Rózsa Hegedüs, Beáta Biri-Kovács, Sven Ingebrandt, G. Mező, L. Kőhidai

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Background: Peptide hormone-based targeted tumor therapy is an approved strategy to selectively block the tumor growth and spreading. The gonadotropin-releasing hormone receptors (GnRH-R) overexpressed on different tumors (e.g., melanoma) could be utilized for drug-targeting by application of a GnRH analog as a carrier to deliver a covalently linked chemotherapeutic drug directly to the tumor cells. In this study our aim was (i) to analyze the effects of GnRH-drug conjugates on melanoma cell proliferation, adhesion and migration, (ii) to study the mechanisms of tumor cell responses, and (iii) to compare the activities of conjugates with the free drug. Results: In the tested conjugates, daunorubicin (Dau) was coupled to 8Lys of GnRH-III (GnRH-III(Dau=Aoa)) or its derivatives modified with 4Lys acylated with short-chain fatty acids (acetyl group in [4Lys(Ac)]-GnRH-III(Dau=Aoa) and butyryl group in [4Lys(Bu)]-GnRH-III(Dau=Aoa)). The uptake of conjugates by A2058 melanoma model cells proved to be time dependent. Impedance-based proliferation measurements with xCELLigence SP system showed that all conjugates elicited irreversible tumor growth inhibitory effects mediated via a phosphoinositide 3-kinase-dependent signaling. GnRH-III(Dau=Aoa) and [4Lys(Ac)]-GnRH III(Dau=Aoa) were shown to be blockers of the cell cycle in the G2/M phase, while [4Lys(Bu)]-GnRH-III(Dau=Aoa) rather induced apoptosis. In short-term, the melanoma cell adhesion was significantly increased by all the tested conjugates. The modification of the GnRH-III in position 4 was accompanied by an increased cellular uptake, higher cytotoxic and cell adhesion inducer activity. By studying the cell movement of A2058 cells with a holographic microscope, it was found that the migratory behavior of melanoma cells was increased by [4Lys(Ac)]-GnRH-III(Dau=Aoa), while the GnRH-III(Dau=Aoa) and [4Lys(Bu)]-GnRHIII( Dau=Aoa) decreased this activity. Conclusion: Internalization and cytotoxicity of the conjugates showed that GnRH-III peptides could guard Dau to melanoma cells and promote antitumor activity. [4Lys(Bu)]-GnRH-III(Dau=Aoa) possessing the butyryl side chain acting as a "second drug" proved to be the best candidate for targeted tumor therapy due to its cytotoxicity and immobilizing effect on tumor cell spreading. The applicability of impedimetry and holographic phase imaging for characterizing cancer cell behavior and effects of targeted chemotherapeutics with small structural differences (e.g., length of the side chain in 4Lys) was also clearly suggested.

Original languageEnglish
Pages (from-to)2495-2509
Number of pages15
JournalBeilstein Journal of Organic Chemistry
Volume14
DOIs
Publication statusPublished - Jan 1 2018

Fingerprint

Daunorubicin
Volatile Fatty Acids
Tumors
Cells
Cell adhesion
Cytotoxicity
Gonadotropin-Releasing Hormone
Pharmaceutical Preparations
gonadotropin-releasing hormone-III
LHRH Receptors
Peptide Hormones
Cell proliferation
Phosphatidylinositols
Microscopes
Phosphotransferases
Adhesion

Keywords

  • Drug-targeting conjugates
  • Gonadotropin-releasing hormone-III
  • Holographic microscopy
  • Impedimetry
  • Short-chain fatty acids

ASJC Scopus subject areas

  • Organic Chemistry

Cite this

Comparative cell biological study of in vitro antitumor and antimetastatic activity on melanoma cells of GnRH-III-containing conjugates modified with short-chain fatty acids. / Lajkó, Eszter; Spring, Sarah; Hegedüs, Rózsa; Biri-Kovács, Beáta; Ingebrandt, Sven; Mező, G.; Kőhidai, L.

In: Beilstein Journal of Organic Chemistry, Vol. 14, 01.01.2018, p. 2495-2509.

Research output: Contribution to journalArticle

@article{62441de0c8114e368b3f59b5926dd8b3,
title = "Comparative cell biological study of in vitro antitumor and antimetastatic activity on melanoma cells of GnRH-III-containing conjugates modified with short-chain fatty acids",
abstract = "Background: Peptide hormone-based targeted tumor therapy is an approved strategy to selectively block the tumor growth and spreading. The gonadotropin-releasing hormone receptors (GnRH-R) overexpressed on different tumors (e.g., melanoma) could be utilized for drug-targeting by application of a GnRH analog as a carrier to deliver a covalently linked chemotherapeutic drug directly to the tumor cells. In this study our aim was (i) to analyze the effects of GnRH-drug conjugates on melanoma cell proliferation, adhesion and migration, (ii) to study the mechanisms of tumor cell responses, and (iii) to compare the activities of conjugates with the free drug. Results: In the tested conjugates, daunorubicin (Dau) was coupled to 8Lys of GnRH-III (GnRH-III(Dau=Aoa)) or its derivatives modified with 4Lys acylated with short-chain fatty acids (acetyl group in [4Lys(Ac)]-GnRH-III(Dau=Aoa) and butyryl group in [4Lys(Bu)]-GnRH-III(Dau=Aoa)). The uptake of conjugates by A2058 melanoma model cells proved to be time dependent. Impedance-based proliferation measurements with xCELLigence SP system showed that all conjugates elicited irreversible tumor growth inhibitory effects mediated via a phosphoinositide 3-kinase-dependent signaling. GnRH-III(Dau=Aoa) and [4Lys(Ac)]-GnRH III(Dau=Aoa) were shown to be blockers of the cell cycle in the G2/M phase, while [4Lys(Bu)]-GnRH-III(Dau=Aoa) rather induced apoptosis. In short-term, the melanoma cell adhesion was significantly increased by all the tested conjugates. The modification of the GnRH-III in position 4 was accompanied by an increased cellular uptake, higher cytotoxic and cell adhesion inducer activity. By studying the cell movement of A2058 cells with a holographic microscope, it was found that the migratory behavior of melanoma cells was increased by [4Lys(Ac)]-GnRH-III(Dau=Aoa), while the GnRH-III(Dau=Aoa) and [4Lys(Bu)]-GnRHIII( Dau=Aoa) decreased this activity. Conclusion: Internalization and cytotoxicity of the conjugates showed that GnRH-III peptides could guard Dau to melanoma cells and promote antitumor activity. [4Lys(Bu)]-GnRH-III(Dau=Aoa) possessing the butyryl side chain acting as a {"}second drug{"} proved to be the best candidate for targeted tumor therapy due to its cytotoxicity and immobilizing effect on tumor cell spreading. The applicability of impedimetry and holographic phase imaging for characterizing cancer cell behavior and effects of targeted chemotherapeutics with small structural differences (e.g., length of the side chain in 4Lys) was also clearly suggested.",
keywords = "Drug-targeting conjugates, Gonadotropin-releasing hormone-III, Holographic microscopy, Impedimetry, Short-chain fatty acids",
author = "Eszter Lajk{\'o} and Sarah Spring and R{\'o}zsa Heged{\"u}s and Be{\'a}ta Biri-Kov{\'a}cs and Sven Ingebrandt and G. Mező and L. Kőhidai",
year = "2018",
month = "1",
day = "1",
doi = "10.3762/bjoc.14.226",
language = "English",
volume = "14",
pages = "2495--2509",
journal = "Beilstein Journal of Organic Chemistry",
issn = "1860-5397",
publisher = "Beilstein-Institut Zur Forderung der Chemischen Wissenschaften",

}

TY - JOUR

T1 - Comparative cell biological study of in vitro antitumor and antimetastatic activity on melanoma cells of GnRH-III-containing conjugates modified with short-chain fatty acids

AU - Lajkó, Eszter

AU - Spring, Sarah

AU - Hegedüs, Rózsa

AU - Biri-Kovács, Beáta

AU - Ingebrandt, Sven

AU - Mező, G.

AU - Kőhidai, L.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Background: Peptide hormone-based targeted tumor therapy is an approved strategy to selectively block the tumor growth and spreading. The gonadotropin-releasing hormone receptors (GnRH-R) overexpressed on different tumors (e.g., melanoma) could be utilized for drug-targeting by application of a GnRH analog as a carrier to deliver a covalently linked chemotherapeutic drug directly to the tumor cells. In this study our aim was (i) to analyze the effects of GnRH-drug conjugates on melanoma cell proliferation, adhesion and migration, (ii) to study the mechanisms of tumor cell responses, and (iii) to compare the activities of conjugates with the free drug. Results: In the tested conjugates, daunorubicin (Dau) was coupled to 8Lys of GnRH-III (GnRH-III(Dau=Aoa)) or its derivatives modified with 4Lys acylated with short-chain fatty acids (acetyl group in [4Lys(Ac)]-GnRH-III(Dau=Aoa) and butyryl group in [4Lys(Bu)]-GnRH-III(Dau=Aoa)). The uptake of conjugates by A2058 melanoma model cells proved to be time dependent. Impedance-based proliferation measurements with xCELLigence SP system showed that all conjugates elicited irreversible tumor growth inhibitory effects mediated via a phosphoinositide 3-kinase-dependent signaling. GnRH-III(Dau=Aoa) and [4Lys(Ac)]-GnRH III(Dau=Aoa) were shown to be blockers of the cell cycle in the G2/M phase, while [4Lys(Bu)]-GnRH-III(Dau=Aoa) rather induced apoptosis. In short-term, the melanoma cell adhesion was significantly increased by all the tested conjugates. The modification of the GnRH-III in position 4 was accompanied by an increased cellular uptake, higher cytotoxic and cell adhesion inducer activity. By studying the cell movement of A2058 cells with a holographic microscope, it was found that the migratory behavior of melanoma cells was increased by [4Lys(Ac)]-GnRH-III(Dau=Aoa), while the GnRH-III(Dau=Aoa) and [4Lys(Bu)]-GnRHIII( Dau=Aoa) decreased this activity. Conclusion: Internalization and cytotoxicity of the conjugates showed that GnRH-III peptides could guard Dau to melanoma cells and promote antitumor activity. [4Lys(Bu)]-GnRH-III(Dau=Aoa) possessing the butyryl side chain acting as a "second drug" proved to be the best candidate for targeted tumor therapy due to its cytotoxicity and immobilizing effect on tumor cell spreading. The applicability of impedimetry and holographic phase imaging for characterizing cancer cell behavior and effects of targeted chemotherapeutics with small structural differences (e.g., length of the side chain in 4Lys) was also clearly suggested.

AB - Background: Peptide hormone-based targeted tumor therapy is an approved strategy to selectively block the tumor growth and spreading. The gonadotropin-releasing hormone receptors (GnRH-R) overexpressed on different tumors (e.g., melanoma) could be utilized for drug-targeting by application of a GnRH analog as a carrier to deliver a covalently linked chemotherapeutic drug directly to the tumor cells. In this study our aim was (i) to analyze the effects of GnRH-drug conjugates on melanoma cell proliferation, adhesion and migration, (ii) to study the mechanisms of tumor cell responses, and (iii) to compare the activities of conjugates with the free drug. Results: In the tested conjugates, daunorubicin (Dau) was coupled to 8Lys of GnRH-III (GnRH-III(Dau=Aoa)) or its derivatives modified with 4Lys acylated with short-chain fatty acids (acetyl group in [4Lys(Ac)]-GnRH-III(Dau=Aoa) and butyryl group in [4Lys(Bu)]-GnRH-III(Dau=Aoa)). The uptake of conjugates by A2058 melanoma model cells proved to be time dependent. Impedance-based proliferation measurements with xCELLigence SP system showed that all conjugates elicited irreversible tumor growth inhibitory effects mediated via a phosphoinositide 3-kinase-dependent signaling. GnRH-III(Dau=Aoa) and [4Lys(Ac)]-GnRH III(Dau=Aoa) were shown to be blockers of the cell cycle in the G2/M phase, while [4Lys(Bu)]-GnRH-III(Dau=Aoa) rather induced apoptosis. In short-term, the melanoma cell adhesion was significantly increased by all the tested conjugates. The modification of the GnRH-III in position 4 was accompanied by an increased cellular uptake, higher cytotoxic and cell adhesion inducer activity. By studying the cell movement of A2058 cells with a holographic microscope, it was found that the migratory behavior of melanoma cells was increased by [4Lys(Ac)]-GnRH-III(Dau=Aoa), while the GnRH-III(Dau=Aoa) and [4Lys(Bu)]-GnRHIII( Dau=Aoa) decreased this activity. Conclusion: Internalization and cytotoxicity of the conjugates showed that GnRH-III peptides could guard Dau to melanoma cells and promote antitumor activity. [4Lys(Bu)]-GnRH-III(Dau=Aoa) possessing the butyryl side chain acting as a "second drug" proved to be the best candidate for targeted tumor therapy due to its cytotoxicity and immobilizing effect on tumor cell spreading. The applicability of impedimetry and holographic phase imaging for characterizing cancer cell behavior and effects of targeted chemotherapeutics with small structural differences (e.g., length of the side chain in 4Lys) was also clearly suggested.

KW - Drug-targeting conjugates

KW - Gonadotropin-releasing hormone-III

KW - Holographic microscopy

KW - Impedimetry

KW - Short-chain fatty acids

UR - http://www.scopus.com/inward/record.url?scp=85054878758&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054878758&partnerID=8YFLogxK

U2 - 10.3762/bjoc.14.226

DO - 10.3762/bjoc.14.226

M3 - Article

AN - SCOPUS:85054878758

VL - 14

SP - 2495

EP - 2509

JO - Beilstein Journal of Organic Chemistry

JF - Beilstein Journal of Organic Chemistry

SN - 1860-5397

ER -