Colonisation of conventional weaned pigs by enteropathogenic Escherichia coli (EPEC) and its hazard potential for human health

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Enteropathogenic Escherichia coli (EPEC) bacteria frequently cause severe enteric diseases primarily in children and in young rabbits. Their pathogenicity for pigs has been tested by oral infection of colostrum-deprived newborn, and of severely immunosuppressed weaned pigs, but colonisation of conventional weaned pigs by porcine EPEC has not been experimentally studied. EPEC show similarities to enterohaemorrhagic E. coli (EHEC) additionally carrying shiga toxin genes integrated into the chromosome by lambdoid phages. We have demonstrated earlier that the porcine EPEC prototype strain P86-1390 (O45) could be transduced in vivo (in ligated loops of weaned pigs), by Stx2 phage derived from a human EHEC. Thus, the ability of this porcine EPEC strain to colonise conventional weaned pigs under farming conditions became a question of relevance to human health. To clarify this question, four intragastric infection experiments were performed on a total of 95 conventional weaned pigs. The EPEC P86-1390 and other well-characterised porcine EPEC strains were applied to 54 pigs, leaving 41 weaned pigs as negative controls. In three experiments moderate predispositions were applied: coinfections with enterotoxigenic E. coli (ETEC) or with low-virulence TGE coronavirus, application of fumonisin B1 with a normal therapeutic dose of dexamethasone, and the increase of soybean protein concentration in the feed. A total of 41 weaned pigs served as negative controls inoculated with a commensal porcine E. coli. Housing conditions simulated the farm environment. As an overall result, ileal segments of 18.5% of infected pigs were shown to be colonised by EPEC, while no EPEC were detected in the ilea of controls. Among predisposing factors occurring on farms, feed protein content increased by 20% (26.3% crude protein, provided by 48% soybean meal) seemed to enhance EPEC colonisation and resulted in the mobilisation of spontaneous latent EPEC/ETEC infection. The results indicate that under normal farm conditions porcine EPEC may colonise conventional weaned pigs by inducing ileal attaching effacing (AE) lesions with reasonable frequency, without clinical signs. The results also suggest that conventional weaned pigs may represent undetected reservoirs of porcine EPEC, potentially giving rise to the emergence of new types of EHEC due to natural transduction by Stx phages.

Original languageEnglish
Pages (from-to)297-307
Number of pages11
JournalActa Veterinaria Hungarica
Volume60
Issue number3
DOIs
Publication statusPublished - Sep 1 2012

Fingerprint

Enteropathogenic Escherichia coli
enteropathogenic Escherichia coli
human health
Swine
swine
Health
Enterohemorrhagic Escherichia coli
enterohemorrhagic Escherichia coli
bacteriophages
Bacteriophages
Enterotoxigenic Escherichia coli
enterotoxigenic Escherichia coli
farms
Virulence
infection
Shiga Toxin
Shiga toxin
Escherichia coli Infections

Keywords

  • animal reservoir
  • enterohaemorrhagic E. coli (EHEC)
  • Enteropathogenic E. coli (EPEC)
  • experimental infection
  • weaned pigs

ASJC Scopus subject areas

  • veterinary(all)

Cite this

@article{fc89c175f576417e8a3f3c880220e481,
title = "Colonisation of conventional weaned pigs by enteropathogenic Escherichia coli (EPEC) and its hazard potential for human health",
abstract = "Enteropathogenic Escherichia coli (EPEC) bacteria frequently cause severe enteric diseases primarily in children and in young rabbits. Their pathogenicity for pigs has been tested by oral infection of colostrum-deprived newborn, and of severely immunosuppressed weaned pigs, but colonisation of conventional weaned pigs by porcine EPEC has not been experimentally studied. EPEC show similarities to enterohaemorrhagic E. coli (EHEC) additionally carrying shiga toxin genes integrated into the chromosome by lambdoid phages. We have demonstrated earlier that the porcine EPEC prototype strain P86-1390 (O45) could be transduced in vivo (in ligated loops of weaned pigs), by Stx2 phage derived from a human EHEC. Thus, the ability of this porcine EPEC strain to colonise conventional weaned pigs under farming conditions became a question of relevance to human health. To clarify this question, four intragastric infection experiments were performed on a total of 95 conventional weaned pigs. The EPEC P86-1390 and other well-characterised porcine EPEC strains were applied to 54 pigs, leaving 41 weaned pigs as negative controls. In three experiments moderate predispositions were applied: coinfections with enterotoxigenic E. coli (ETEC) or with low-virulence TGE coronavirus, application of fumonisin B1 with a normal therapeutic dose of dexamethasone, and the increase of soybean protein concentration in the feed. A total of 41 weaned pigs served as negative controls inoculated with a commensal porcine E. coli. Housing conditions simulated the farm environment. As an overall result, ileal segments of 18.5{\%} of infected pigs were shown to be colonised by EPEC, while no EPEC were detected in the ilea of controls. Among predisposing factors occurring on farms, feed protein content increased by 20{\%} (26.3{\%} crude protein, provided by 48{\%} soybean meal) seemed to enhance EPEC colonisation and resulted in the mobilisation of spontaneous latent EPEC/ETEC infection. The results indicate that under normal farm conditions porcine EPEC may colonise conventional weaned pigs by inducing ileal attaching effacing (AE) lesions with reasonable frequency, without clinical signs. The results also suggest that conventional weaned pigs may represent undetected reservoirs of porcine EPEC, potentially giving rise to the emergence of new types of EHEC due to natural transduction by Stx phages.",
keywords = "animal reservoir, enterohaemorrhagic E. coli (EHEC), Enteropathogenic E. coli (EPEC), experimental infection, weaned pigs",
author = "Anna Malik and Istv{\'a}n T{\'o}th and B{\'e}la Nagy",
year = "2012",
month = "9",
day = "1",
doi = "10.1556/AVet.2012.025",
language = "English",
volume = "60",
pages = "297--307",
journal = "Acta Veterinaria Hungarica",
issn = "0236-6290",
publisher = "Akademiai Kiado",
number = "3",

}

TY - JOUR

T1 - Colonisation of conventional weaned pigs by enteropathogenic Escherichia coli (EPEC) and its hazard potential for human health

AU - Malik, Anna

AU - Tóth, István

AU - Nagy, Béla

PY - 2012/9/1

Y1 - 2012/9/1

N2 - Enteropathogenic Escherichia coli (EPEC) bacteria frequently cause severe enteric diseases primarily in children and in young rabbits. Their pathogenicity for pigs has been tested by oral infection of colostrum-deprived newborn, and of severely immunosuppressed weaned pigs, but colonisation of conventional weaned pigs by porcine EPEC has not been experimentally studied. EPEC show similarities to enterohaemorrhagic E. coli (EHEC) additionally carrying shiga toxin genes integrated into the chromosome by lambdoid phages. We have demonstrated earlier that the porcine EPEC prototype strain P86-1390 (O45) could be transduced in vivo (in ligated loops of weaned pigs), by Stx2 phage derived from a human EHEC. Thus, the ability of this porcine EPEC strain to colonise conventional weaned pigs under farming conditions became a question of relevance to human health. To clarify this question, four intragastric infection experiments were performed on a total of 95 conventional weaned pigs. The EPEC P86-1390 and other well-characterised porcine EPEC strains were applied to 54 pigs, leaving 41 weaned pigs as negative controls. In three experiments moderate predispositions were applied: coinfections with enterotoxigenic E. coli (ETEC) or with low-virulence TGE coronavirus, application of fumonisin B1 with a normal therapeutic dose of dexamethasone, and the increase of soybean protein concentration in the feed. A total of 41 weaned pigs served as negative controls inoculated with a commensal porcine E. coli. Housing conditions simulated the farm environment. As an overall result, ileal segments of 18.5% of infected pigs were shown to be colonised by EPEC, while no EPEC were detected in the ilea of controls. Among predisposing factors occurring on farms, feed protein content increased by 20% (26.3% crude protein, provided by 48% soybean meal) seemed to enhance EPEC colonisation and resulted in the mobilisation of spontaneous latent EPEC/ETEC infection. The results indicate that under normal farm conditions porcine EPEC may colonise conventional weaned pigs by inducing ileal attaching effacing (AE) lesions with reasonable frequency, without clinical signs. The results also suggest that conventional weaned pigs may represent undetected reservoirs of porcine EPEC, potentially giving rise to the emergence of new types of EHEC due to natural transduction by Stx phages.

AB - Enteropathogenic Escherichia coli (EPEC) bacteria frequently cause severe enteric diseases primarily in children and in young rabbits. Their pathogenicity for pigs has been tested by oral infection of colostrum-deprived newborn, and of severely immunosuppressed weaned pigs, but colonisation of conventional weaned pigs by porcine EPEC has not been experimentally studied. EPEC show similarities to enterohaemorrhagic E. coli (EHEC) additionally carrying shiga toxin genes integrated into the chromosome by lambdoid phages. We have demonstrated earlier that the porcine EPEC prototype strain P86-1390 (O45) could be transduced in vivo (in ligated loops of weaned pigs), by Stx2 phage derived from a human EHEC. Thus, the ability of this porcine EPEC strain to colonise conventional weaned pigs under farming conditions became a question of relevance to human health. To clarify this question, four intragastric infection experiments were performed on a total of 95 conventional weaned pigs. The EPEC P86-1390 and other well-characterised porcine EPEC strains were applied to 54 pigs, leaving 41 weaned pigs as negative controls. In three experiments moderate predispositions were applied: coinfections with enterotoxigenic E. coli (ETEC) or with low-virulence TGE coronavirus, application of fumonisin B1 with a normal therapeutic dose of dexamethasone, and the increase of soybean protein concentration in the feed. A total of 41 weaned pigs served as negative controls inoculated with a commensal porcine E. coli. Housing conditions simulated the farm environment. As an overall result, ileal segments of 18.5% of infected pigs were shown to be colonised by EPEC, while no EPEC were detected in the ilea of controls. Among predisposing factors occurring on farms, feed protein content increased by 20% (26.3% crude protein, provided by 48% soybean meal) seemed to enhance EPEC colonisation and resulted in the mobilisation of spontaneous latent EPEC/ETEC infection. The results indicate that under normal farm conditions porcine EPEC may colonise conventional weaned pigs by inducing ileal attaching effacing (AE) lesions with reasonable frequency, without clinical signs. The results also suggest that conventional weaned pigs may represent undetected reservoirs of porcine EPEC, potentially giving rise to the emergence of new types of EHEC due to natural transduction by Stx phages.

KW - animal reservoir

KW - enterohaemorrhagic E. coli (EHEC)

KW - Enteropathogenic E. coli (EPEC)

KW - experimental infection

KW - weaned pigs

UR - http://www.scopus.com/inward/record.url?scp=84865648151&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84865648151&partnerID=8YFLogxK

U2 - 10.1556/AVet.2012.025

DO - 10.1556/AVet.2012.025

M3 - Article

VL - 60

SP - 297

EP - 307

JO - Acta Veterinaria Hungarica

JF - Acta Veterinaria Hungarica

SN - 0236-6290

IS - 3

ER -