Clusters of classical water models

Péter T. Kiss, A. Baranyai

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

The properties of clusters can be used as tests of models constructed for molecular simulation of water. We searched for configurations with minimal energies for a small number of molecules. We identified topologically different structures close to the absolute energy minimum of the system by calculating overlap integrals and enumerating hydrogen bonds. Starting from the dimer, we found increasing number of topologically different, low-energy arrangements for the trimer(3), the tetramer(6), the pentamer(6), and the hexamer(9). We studied simple models with polarizable point dipole. These were the BSV model [J. Brodholt, Mol. Phys. 86, 149 (1995)], the DC model [L. X. Dang and T. M. Chang, J. Chem. Phys. 106, 8149 (1997)], and the GCP model [P. Paricaud, J. Chem. Phys. 122, 244511 (2005)]. As an alternative the SWM4-DP and the SWM4-NDP charge-on-spring models [G. Lamoureux, Chem. Phys. Lett. 418, 245 (2006)] were also investigated. To study the impact of polarizability restricted to the plane of the molecule we carried out calculations for the SPC-FQ and TIP4P-FQ models, too [S. W. Rick, J. Chem. Phys. 101, 6141 (1994)]. In addition to them, justified by their widespread use even for near critical or surface behavior calculations, we identified clusters for five nonpolarizable models of ambient water, SPC/E [H. J. C. Berendsen, J. Phys. Chem. 91, 6269 (1987)], TIP4P [W. L. Jorgensen, J. Chem. Phys. 79, 926 (1983)], TIP4P-EW [H. W. Horn, J. Chem. Phys. 120, 9665 (2004)], and TIP4P/2005 [J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005)]. The fifth was a five-site model named TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)]. To see the impact of the vibrations we studied the flexible SPC model. [K. Toukan and A. Rahman, Phys. Rev. B 31, 2643 (1985)]. We evaluated the results comparing them with experimental data and quantum chemical calculations. The position of the negative charge in the models plays a crucial role. In this respect models with SPC geometry provided structures different from the TIP4P-type potentials, including polarizable ones. The TIP4P variants form configurations similar to one another. Results for TIP4P-EW and for TIP4P/2005 were especially close to each other in every respect. This is also true for the BSV and the DC pair. The charge-on-spring models (SWM4-DP and SWM4-NDP) are also very similar to each other, despite the sign exchange of charges on the spring particle and the oxygen. The spherical polarization of water is crucial. Due to the planar polarization of the SPC-FQ and the TIP4P-FQ models, they prefer planar arrangements contrary to other polarizable models and quantum chemical calculations. The tetrahedral geometry of TIP5P stabilizes additional clusters with peculiar geometries and small O-O distances. Inclusion of vibrations causes only insignificant changes in the characteristic geometries but decreases the internal energy relative to its reference rigid version. Comparing with quantum mechanical calculations the GCP model provided the best overall results.

Original languageEnglish
Article number204310
JournalThe Journal of Chemical Physics
Volume131
Issue number20
DOIs
Publication statusPublished - 2009

Fingerprint

Water
water
Geometry
geometry
direct current
Polarization
vibration
Molecules
polarization
trimers
configurations
internal energy
Dimers
energy
molecules
Hydrogen bonds
dimers
inclusions
hydrogen bonds
Oxygen

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this

Clusters of classical water models. / Kiss, Péter T.; Baranyai, A.

In: The Journal of Chemical Physics, Vol. 131, No. 20, 204310, 2009.

Research output: Contribution to journalArticle

@article{d24fe083a17d4925ba8222516428a553,
title = "Clusters of classical water models",
abstract = "The properties of clusters can be used as tests of models constructed for molecular simulation of water. We searched for configurations with minimal energies for a small number of molecules. We identified topologically different structures close to the absolute energy minimum of the system by calculating overlap integrals and enumerating hydrogen bonds. Starting from the dimer, we found increasing number of topologically different, low-energy arrangements for the trimer(3), the tetramer(6), the pentamer(6), and the hexamer(9). We studied simple models with polarizable point dipole. These were the BSV model [J. Brodholt, Mol. Phys. 86, 149 (1995)], the DC model [L. X. Dang and T. M. Chang, J. Chem. Phys. 106, 8149 (1997)], and the GCP model [P. Paricaud, J. Chem. Phys. 122, 244511 (2005)]. As an alternative the SWM4-DP and the SWM4-NDP charge-on-spring models [G. Lamoureux, Chem. Phys. Lett. 418, 245 (2006)] were also investigated. To study the impact of polarizability restricted to the plane of the molecule we carried out calculations for the SPC-FQ and TIP4P-FQ models, too [S. W. Rick, J. Chem. Phys. 101, 6141 (1994)]. In addition to them, justified by their widespread use even for near critical or surface behavior calculations, we identified clusters for five nonpolarizable models of ambient water, SPC/E [H. J. C. Berendsen, J. Phys. Chem. 91, 6269 (1987)], TIP4P [W. L. Jorgensen, J. Chem. Phys. 79, 926 (1983)], TIP4P-EW [H. W. Horn, J. Chem. Phys. 120, 9665 (2004)], and TIP4P/2005 [J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005)]. The fifth was a five-site model named TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)]. To see the impact of the vibrations we studied the flexible SPC model. [K. Toukan and A. Rahman, Phys. Rev. B 31, 2643 (1985)]. We evaluated the results comparing them with experimental data and quantum chemical calculations. The position of the negative charge in the models plays a crucial role. In this respect models with SPC geometry provided structures different from the TIP4P-type potentials, including polarizable ones. The TIP4P variants form configurations similar to one another. Results for TIP4P-EW and for TIP4P/2005 were especially close to each other in every respect. This is also true for the BSV and the DC pair. The charge-on-spring models (SWM4-DP and SWM4-NDP) are also very similar to each other, despite the sign exchange of charges on the spring particle and the oxygen. The spherical polarization of water is crucial. Due to the planar polarization of the SPC-FQ and the TIP4P-FQ models, they prefer planar arrangements contrary to other polarizable models and quantum chemical calculations. The tetrahedral geometry of TIP5P stabilizes additional clusters with peculiar geometries and small O-O distances. Inclusion of vibrations causes only insignificant changes in the characteristic geometries but decreases the internal energy relative to its reference rigid version. Comparing with quantum mechanical calculations the GCP model provided the best overall results.",
author = "Kiss, {P{\'e}ter T.} and A. Baranyai",
year = "2009",
doi = "10.1063/1.3266838",
language = "English",
volume = "131",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "20",

}

TY - JOUR

T1 - Clusters of classical water models

AU - Kiss, Péter T.

AU - Baranyai, A.

PY - 2009

Y1 - 2009

N2 - The properties of clusters can be used as tests of models constructed for molecular simulation of water. We searched for configurations with minimal energies for a small number of molecules. We identified topologically different structures close to the absolute energy minimum of the system by calculating overlap integrals and enumerating hydrogen bonds. Starting from the dimer, we found increasing number of topologically different, low-energy arrangements for the trimer(3), the tetramer(6), the pentamer(6), and the hexamer(9). We studied simple models with polarizable point dipole. These were the BSV model [J. Brodholt, Mol. Phys. 86, 149 (1995)], the DC model [L. X. Dang and T. M. Chang, J. Chem. Phys. 106, 8149 (1997)], and the GCP model [P. Paricaud, J. Chem. Phys. 122, 244511 (2005)]. As an alternative the SWM4-DP and the SWM4-NDP charge-on-spring models [G. Lamoureux, Chem. Phys. Lett. 418, 245 (2006)] were also investigated. To study the impact of polarizability restricted to the plane of the molecule we carried out calculations for the SPC-FQ and TIP4P-FQ models, too [S. W. Rick, J. Chem. Phys. 101, 6141 (1994)]. In addition to them, justified by their widespread use even for near critical or surface behavior calculations, we identified clusters for five nonpolarizable models of ambient water, SPC/E [H. J. C. Berendsen, J. Phys. Chem. 91, 6269 (1987)], TIP4P [W. L. Jorgensen, J. Chem. Phys. 79, 926 (1983)], TIP4P-EW [H. W. Horn, J. Chem. Phys. 120, 9665 (2004)], and TIP4P/2005 [J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005)]. The fifth was a five-site model named TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)]. To see the impact of the vibrations we studied the flexible SPC model. [K. Toukan and A. Rahman, Phys. Rev. B 31, 2643 (1985)]. We evaluated the results comparing them with experimental data and quantum chemical calculations. The position of the negative charge in the models plays a crucial role. In this respect models with SPC geometry provided structures different from the TIP4P-type potentials, including polarizable ones. The TIP4P variants form configurations similar to one another. Results for TIP4P-EW and for TIP4P/2005 were especially close to each other in every respect. This is also true for the BSV and the DC pair. The charge-on-spring models (SWM4-DP and SWM4-NDP) are also very similar to each other, despite the sign exchange of charges on the spring particle and the oxygen. The spherical polarization of water is crucial. Due to the planar polarization of the SPC-FQ and the TIP4P-FQ models, they prefer planar arrangements contrary to other polarizable models and quantum chemical calculations. The tetrahedral geometry of TIP5P stabilizes additional clusters with peculiar geometries and small O-O distances. Inclusion of vibrations causes only insignificant changes in the characteristic geometries but decreases the internal energy relative to its reference rigid version. Comparing with quantum mechanical calculations the GCP model provided the best overall results.

AB - The properties of clusters can be used as tests of models constructed for molecular simulation of water. We searched for configurations with minimal energies for a small number of molecules. We identified topologically different structures close to the absolute energy minimum of the system by calculating overlap integrals and enumerating hydrogen bonds. Starting from the dimer, we found increasing number of topologically different, low-energy arrangements for the trimer(3), the tetramer(6), the pentamer(6), and the hexamer(9). We studied simple models with polarizable point dipole. These were the BSV model [J. Brodholt, Mol. Phys. 86, 149 (1995)], the DC model [L. X. Dang and T. M. Chang, J. Chem. Phys. 106, 8149 (1997)], and the GCP model [P. Paricaud, J. Chem. Phys. 122, 244511 (2005)]. As an alternative the SWM4-DP and the SWM4-NDP charge-on-spring models [G. Lamoureux, Chem. Phys. Lett. 418, 245 (2006)] were also investigated. To study the impact of polarizability restricted to the plane of the molecule we carried out calculations for the SPC-FQ and TIP4P-FQ models, too [S. W. Rick, J. Chem. Phys. 101, 6141 (1994)]. In addition to them, justified by their widespread use even for near critical or surface behavior calculations, we identified clusters for five nonpolarizable models of ambient water, SPC/E [H. J. C. Berendsen, J. Phys. Chem. 91, 6269 (1987)], TIP4P [W. L. Jorgensen, J. Chem. Phys. 79, 926 (1983)], TIP4P-EW [H. W. Horn, J. Chem. Phys. 120, 9665 (2004)], and TIP4P/2005 [J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005)]. The fifth was a five-site model named TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)]. To see the impact of the vibrations we studied the flexible SPC model. [K. Toukan and A. Rahman, Phys. Rev. B 31, 2643 (1985)]. We evaluated the results comparing them with experimental data and quantum chemical calculations. The position of the negative charge in the models plays a crucial role. In this respect models with SPC geometry provided structures different from the TIP4P-type potentials, including polarizable ones. The TIP4P variants form configurations similar to one another. Results for TIP4P-EW and for TIP4P/2005 were especially close to each other in every respect. This is also true for the BSV and the DC pair. The charge-on-spring models (SWM4-DP and SWM4-NDP) are also very similar to each other, despite the sign exchange of charges on the spring particle and the oxygen. The spherical polarization of water is crucial. Due to the planar polarization of the SPC-FQ and the TIP4P-FQ models, they prefer planar arrangements contrary to other polarizable models and quantum chemical calculations. The tetrahedral geometry of TIP5P stabilizes additional clusters with peculiar geometries and small O-O distances. Inclusion of vibrations causes only insignificant changes in the characteristic geometries but decreases the internal energy relative to its reference rigid version. Comparing with quantum mechanical calculations the GCP model provided the best overall results.

UR - http://www.scopus.com/inward/record.url?scp=71549124712&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=71549124712&partnerID=8YFLogxK

U2 - 10.1063/1.3266838

DO - 10.1063/1.3266838

M3 - Article

VL - 131

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 20

M1 - 204310

ER -