Chiral atropisomeric diiodobiphenyls - Enantiodifferentiation by the dirhodium method

Stefan Moeller, Dieter Albert, Helmut Duddeck, A. Simon, Gábor Tóth, Oleg M. Demchuk, K. Michał Pietrusiewicz

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Enantiodifferentiation of atropisomeric biphenyl diiodides can easily be accomplished by adding the enantiopure dirhodium complex Rh* as an NMR auxiliary, although iodine is only a weak donor in forming adducts with Rh*. Further Lewis-base substituents X/X′ (e.g., NH 2 or SH) may dominate the adduct formation equilibria whereas others are hardly involved (e.g., Cl, OCH 3, NMe 2, and OH).

Original languageEnglish
Pages (from-to)3609-3616
Number of pages8
JournalTetrahedron Asymmetry
Volume15
Issue number22
DOIs
Publication statusPublished - Nov 15 2004

Fingerprint

Lewis Bases
Iodine
adducts
Nuclear magnetic resonance
Lewis base
iodine
nuclear magnetic resonance
diphenyl

ASJC Scopus subject areas

  • Inorganic Chemistry
  • Organic Chemistry
  • Materials Chemistry
  • Drug Discovery

Cite this

Moeller, S., Albert, D., Duddeck, H., Simon, A., Tóth, G., Demchuk, O. M., & Pietrusiewicz, K. M. (2004). Chiral atropisomeric diiodobiphenyls - Enantiodifferentiation by the dirhodium method. Tetrahedron Asymmetry, 15(22), 3609-3616. https://doi.org/10.1016/j.tetasy.2004.09.032

Chiral atropisomeric diiodobiphenyls - Enantiodifferentiation by the dirhodium method. / Moeller, Stefan; Albert, Dieter; Duddeck, Helmut; Simon, A.; Tóth, Gábor; Demchuk, Oleg M.; Pietrusiewicz, K. Michał.

In: Tetrahedron Asymmetry, Vol. 15, No. 22, 15.11.2004, p. 3609-3616.

Research output: Contribution to journalArticle

Moeller, S, Albert, D, Duddeck, H, Simon, A, Tóth, G, Demchuk, OM & Pietrusiewicz, KM 2004, 'Chiral atropisomeric diiodobiphenyls - Enantiodifferentiation by the dirhodium method', Tetrahedron Asymmetry, vol. 15, no. 22, pp. 3609-3616. https://doi.org/10.1016/j.tetasy.2004.09.032
Moeller, Stefan ; Albert, Dieter ; Duddeck, Helmut ; Simon, A. ; Tóth, Gábor ; Demchuk, Oleg M. ; Pietrusiewicz, K. Michał. / Chiral atropisomeric diiodobiphenyls - Enantiodifferentiation by the dirhodium method. In: Tetrahedron Asymmetry. 2004 ; Vol. 15, No. 22. pp. 3609-3616.
@article{b83a67e3732c4265877ede2e8b264edb,
title = "Chiral atropisomeric diiodobiphenyls - Enantiodifferentiation by the dirhodium method",
abstract = "Enantiodifferentiation of atropisomeric biphenyl diiodides can easily be accomplished by adding the enantiopure dirhodium complex Rh* as an NMR auxiliary, although iodine is only a weak donor in forming adducts with Rh*. Further Lewis-base substituents X/X′ (e.g., NH 2 or SH) may dominate the adduct formation equilibria whereas others are hardly involved (e.g., Cl, OCH 3, NMe 2, and OH).",
author = "Stefan Moeller and Dieter Albert and Helmut Duddeck and A. Simon and G{\'a}bor T{\'o}th and Demchuk, {Oleg M.} and Pietrusiewicz, {K. Michał}",
year = "2004",
month = "11",
day = "15",
doi = "10.1016/j.tetasy.2004.09.032",
language = "English",
volume = "15",
pages = "3609--3616",
journal = "Tetrahedron Asymmetry",
issn = "0957-4166",
publisher = "Elsevier Limited",
number = "22",

}

TY - JOUR

T1 - Chiral atropisomeric diiodobiphenyls - Enantiodifferentiation by the dirhodium method

AU - Moeller, Stefan

AU - Albert, Dieter

AU - Duddeck, Helmut

AU - Simon, A.

AU - Tóth, Gábor

AU - Demchuk, Oleg M.

AU - Pietrusiewicz, K. Michał

PY - 2004/11/15

Y1 - 2004/11/15

N2 - Enantiodifferentiation of atropisomeric biphenyl diiodides can easily be accomplished by adding the enantiopure dirhodium complex Rh* as an NMR auxiliary, although iodine is only a weak donor in forming adducts with Rh*. Further Lewis-base substituents X/X′ (e.g., NH 2 or SH) may dominate the adduct formation equilibria whereas others are hardly involved (e.g., Cl, OCH 3, NMe 2, and OH).

AB - Enantiodifferentiation of atropisomeric biphenyl diiodides can easily be accomplished by adding the enantiopure dirhodium complex Rh* as an NMR auxiliary, although iodine is only a weak donor in forming adducts with Rh*. Further Lewis-base substituents X/X′ (e.g., NH 2 or SH) may dominate the adduct formation equilibria whereas others are hardly involved (e.g., Cl, OCH 3, NMe 2, and OH).

UR - http://www.scopus.com/inward/record.url?scp=8144222901&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=8144222901&partnerID=8YFLogxK

U2 - 10.1016/j.tetasy.2004.09.032

DO - 10.1016/j.tetasy.2004.09.032

M3 - Article

AN - SCOPUS:8144222901

VL - 15

SP - 3609

EP - 3616

JO - Tetrahedron Asymmetry

JF - Tetrahedron Asymmetry

SN - 0957-4166

IS - 22

ER -