Chemical transients in closed chaotic flows

The role of effective dimensions

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

We investigate chemical activity in hydrodynamical flows in closed containers. In contrast to open flows, in closed flows the chemical field does not show a well-defined fractal property; nevertheless, there is a transient filamentary structure present. We show that the effect of the filamentary patterns on the chemical activity can be modeled by the use of time-dependent effective dimensions. We derive a new chemical rate equation, which turns out to be coupled to the dynamics of the effective dimension, and predicts an exponential convergence. Previous results concerning activity in open flows are special cases of this new rate equation.

Original languageEnglish
Article number264501
JournalPhysical Review Letters
Volume95
Issue number26
DOIs
Publication statusPublished - Dec 31 2005

Fingerprint

containers
fractals

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Chemical transients in closed chaotic flows : The role of effective dimensions. / Károlyi, G.; Tél, T.

In: Physical Review Letters, Vol. 95, No. 26, 264501, 31.12.2005.

Research output: Contribution to journalArticle

@article{afc95a09aafa4a179feea35f22442883,
title = "Chemical transients in closed chaotic flows: The role of effective dimensions",
abstract = "We investigate chemical activity in hydrodynamical flows in closed containers. In contrast to open flows, in closed flows the chemical field does not show a well-defined fractal property; nevertheless, there is a transient filamentary structure present. We show that the effect of the filamentary patterns on the chemical activity can be modeled by the use of time-dependent effective dimensions. We derive a new chemical rate equation, which turns out to be coupled to the dynamics of the effective dimension, and predicts an exponential convergence. Previous results concerning activity in open flows are special cases of this new rate equation.",
author = "G. K{\'a}rolyi and T. T{\'e}l",
year = "2005",
month = "12",
day = "31",
doi = "10.1103/PhysRevLett.95.264501",
language = "English",
volume = "95",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "26",

}

TY - JOUR

T1 - Chemical transients in closed chaotic flows

T2 - The role of effective dimensions

AU - Károlyi, G.

AU - Tél, T.

PY - 2005/12/31

Y1 - 2005/12/31

N2 - We investigate chemical activity in hydrodynamical flows in closed containers. In contrast to open flows, in closed flows the chemical field does not show a well-defined fractal property; nevertheless, there is a transient filamentary structure present. We show that the effect of the filamentary patterns on the chemical activity can be modeled by the use of time-dependent effective dimensions. We derive a new chemical rate equation, which turns out to be coupled to the dynamics of the effective dimension, and predicts an exponential convergence. Previous results concerning activity in open flows are special cases of this new rate equation.

AB - We investigate chemical activity in hydrodynamical flows in closed containers. In contrast to open flows, in closed flows the chemical field does not show a well-defined fractal property; nevertheless, there is a transient filamentary structure present. We show that the effect of the filamentary patterns on the chemical activity can be modeled by the use of time-dependent effective dimensions. We derive a new chemical rate equation, which turns out to be coupled to the dynamics of the effective dimension, and predicts an exponential convergence. Previous results concerning activity in open flows are special cases of this new rate equation.

UR - http://www.scopus.com/inward/record.url?scp=30344445132&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=30344445132&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.95.264501

DO - 10.1103/PhysRevLett.95.264501

M3 - Article

VL - 95

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 26

M1 - 264501

ER -