Characterization of wave phenomena in the relaxation of flash-induced chlorophyll fluorescence yield in cyanobacteria

Z. Deák, L. Sass, Éva Kiss, I. Vass

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Fluorescence yield relaxation following a light pulse was studied in various cyanobacteria under aerobic and microaerobic conditions. In Synechocystis PCC 6803 fluorescence yield decays in a monotonous fashion under aerobic conditions. However, under microaerobic conditions the decay exhibits a wave feature showing a dip at 30-50 ms after the flash followed by a transient rise, reaching maximum at ~ 1 s, before decaying back to the initial level. The wave phenomenon can also be observed under aerobic conditions in cells preilluminated with continuous light. Illumination preconditions cells for the wave phenomenon transiently: for few seconds in Synechocystis PCC 6803, but up to one hour in Thermosynechocystis elongatus BP-1. The wave is eliminated by inhibition of plastoquinone binding either to the QB site of Photosystem-II or the Qo site of cytochrome b6f complex by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl- 6-isopropyl-p-benzoquinone, respectively. The wave is also absent in mutants, which lack either Photosystem-I or the NAD(P)H-quinone oxidoreductase (NDH-1) complex. Monitoring the redox state of the plastoquinone pool revealed that the dip of the fluorescence wave corresponds to transient oxidation, whereas the following rise to re-reduction of the plastoquinone pool. It is concluded that the unusual wave feature of fluorescence yield relaxation reflects transient oxidation of highly reduced plastoquinone pool by Photosystem-I followed by its re-reduction from stromal components via the NDH-1 complex, which is transmitted back to the fluorescence yield modulator primary quinone electron acceptor via charge equilibria. Potential applications of the wave phenomenon in studying photosynthetic and respiratory electron transport are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.

Original languageEnglish
Pages (from-to)1522-1532
Number of pages11
JournalBBA - Bioenergetics
Volume1837
Issue number9
DOIs
Publication statusPublished - 2014

Fingerprint

Plastoquinone
Cyanobacteria
Chlorophyll
Fluorescence
Synechocystis
Photosystem I Protein Complex
Dibromothymoquinone
Respiratory Transport
Cytochrome b6f Complex
Diuron
Light
Photosystem II Protein Complex
Photosynthesis
Electron Transport
Lighting
NAD
Oxidation-Reduction
Oxidoreductases
Oxidation
Electrons

Keywords

  • Cyclic electron transport
  • Linear electron transport
  • NDH-1 complex
  • Photosystem II
  • Variable Chl fluorescence

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Cell Biology

Cite this

Characterization of wave phenomena in the relaxation of flash-induced chlorophyll fluorescence yield in cyanobacteria. / Deák, Z.; Sass, L.; Kiss, Éva; Vass, I.

In: BBA - Bioenergetics, Vol. 1837, No. 9, 2014, p. 1522-1532.

Research output: Contribution to journalArticle

@article{f7462698313d4d74a66b4e746fc2f970,
title = "Characterization of wave phenomena in the relaxation of flash-induced chlorophyll fluorescence yield in cyanobacteria",
abstract = "Fluorescence yield relaxation following a light pulse was studied in various cyanobacteria under aerobic and microaerobic conditions. In Synechocystis PCC 6803 fluorescence yield decays in a monotonous fashion under aerobic conditions. However, under microaerobic conditions the decay exhibits a wave feature showing a dip at 30-50 ms after the flash followed by a transient rise, reaching maximum at ~ 1 s, before decaying back to the initial level. The wave phenomenon can also be observed under aerobic conditions in cells preilluminated with continuous light. Illumination preconditions cells for the wave phenomenon transiently: for few seconds in Synechocystis PCC 6803, but up to one hour in Thermosynechocystis elongatus BP-1. The wave is eliminated by inhibition of plastoquinone binding either to the QB site of Photosystem-II or the Qo site of cytochrome b6f complex by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl- 6-isopropyl-p-benzoquinone, respectively. The wave is also absent in mutants, which lack either Photosystem-I or the NAD(P)H-quinone oxidoreductase (NDH-1) complex. Monitoring the redox state of the plastoquinone pool revealed that the dip of the fluorescence wave corresponds to transient oxidation, whereas the following rise to re-reduction of the plastoquinone pool. It is concluded that the unusual wave feature of fluorescence yield relaxation reflects transient oxidation of highly reduced plastoquinone pool by Photosystem-I followed by its re-reduction from stromal components via the NDH-1 complex, which is transmitted back to the fluorescence yield modulator primary quinone electron acceptor via charge equilibria. Potential applications of the wave phenomenon in studying photosynthetic and respiratory electron transport are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.",
keywords = "Cyclic electron transport, Linear electron transport, NDH-1 complex, Photosystem II, Variable Chl fluorescence",
author = "Z. De{\'a}k and L. Sass and {\'E}va Kiss and I. Vass",
year = "2014",
doi = "10.1016/j.bbabio.2014.01.003",
language = "English",
volume = "1837",
pages = "1522--1532",
journal = "Biochimica et Biophysica Acta - Bioenergetics",
issn = "0005-2728",
publisher = "Elsevier",
number = "9",

}

TY - JOUR

T1 - Characterization of wave phenomena in the relaxation of flash-induced chlorophyll fluorescence yield in cyanobacteria

AU - Deák, Z.

AU - Sass, L.

AU - Kiss, Éva

AU - Vass, I.

PY - 2014

Y1 - 2014

N2 - Fluorescence yield relaxation following a light pulse was studied in various cyanobacteria under aerobic and microaerobic conditions. In Synechocystis PCC 6803 fluorescence yield decays in a monotonous fashion under aerobic conditions. However, under microaerobic conditions the decay exhibits a wave feature showing a dip at 30-50 ms after the flash followed by a transient rise, reaching maximum at ~ 1 s, before decaying back to the initial level. The wave phenomenon can also be observed under aerobic conditions in cells preilluminated with continuous light. Illumination preconditions cells for the wave phenomenon transiently: for few seconds in Synechocystis PCC 6803, but up to one hour in Thermosynechocystis elongatus BP-1. The wave is eliminated by inhibition of plastoquinone binding either to the QB site of Photosystem-II or the Qo site of cytochrome b6f complex by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl- 6-isopropyl-p-benzoquinone, respectively. The wave is also absent in mutants, which lack either Photosystem-I or the NAD(P)H-quinone oxidoreductase (NDH-1) complex. Monitoring the redox state of the plastoquinone pool revealed that the dip of the fluorescence wave corresponds to transient oxidation, whereas the following rise to re-reduction of the plastoquinone pool. It is concluded that the unusual wave feature of fluorescence yield relaxation reflects transient oxidation of highly reduced plastoquinone pool by Photosystem-I followed by its re-reduction from stromal components via the NDH-1 complex, which is transmitted back to the fluorescence yield modulator primary quinone electron acceptor via charge equilibria. Potential applications of the wave phenomenon in studying photosynthetic and respiratory electron transport are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.

AB - Fluorescence yield relaxation following a light pulse was studied in various cyanobacteria under aerobic and microaerobic conditions. In Synechocystis PCC 6803 fluorescence yield decays in a monotonous fashion under aerobic conditions. However, under microaerobic conditions the decay exhibits a wave feature showing a dip at 30-50 ms after the flash followed by a transient rise, reaching maximum at ~ 1 s, before decaying back to the initial level. The wave phenomenon can also be observed under aerobic conditions in cells preilluminated with continuous light. Illumination preconditions cells for the wave phenomenon transiently: for few seconds in Synechocystis PCC 6803, but up to one hour in Thermosynechocystis elongatus BP-1. The wave is eliminated by inhibition of plastoquinone binding either to the QB site of Photosystem-II or the Qo site of cytochrome b6f complex by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl- 6-isopropyl-p-benzoquinone, respectively. The wave is also absent in mutants, which lack either Photosystem-I or the NAD(P)H-quinone oxidoreductase (NDH-1) complex. Monitoring the redox state of the plastoquinone pool revealed that the dip of the fluorescence wave corresponds to transient oxidation, whereas the following rise to re-reduction of the plastoquinone pool. It is concluded that the unusual wave feature of fluorescence yield relaxation reflects transient oxidation of highly reduced plastoquinone pool by Photosystem-I followed by its re-reduction from stromal components via the NDH-1 complex, which is transmitted back to the fluorescence yield modulator primary quinone electron acceptor via charge equilibria. Potential applications of the wave phenomenon in studying photosynthetic and respiratory electron transport are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.

KW - Cyclic electron transport

KW - Linear electron transport

KW - NDH-1 complex

KW - Photosystem II

KW - Variable Chl fluorescence

UR - http://www.scopus.com/inward/record.url?scp=84906323654&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84906323654&partnerID=8YFLogxK

U2 - 10.1016/j.bbabio.2014.01.003

DO - 10.1016/j.bbabio.2014.01.003

M3 - Article

VL - 1837

SP - 1522

EP - 1532

JO - Biochimica et Biophysica Acta - Bioenergetics

JF - Biochimica et Biophysica Acta - Bioenergetics

SN - 0005-2728

IS - 9

ER -