Characterization of ester hydrolysis in terms of microscopic rate constants

Béla Noszál, Dóra Visky, Márta Kraszni

Research output: Contribution to journalArticle

6 Citations (Scopus)


Hydroxide-catalyzed ester hydrolysis for molecules of coexisting species is quantitated in terms of microscopic rate constants, a new, species-specific physicochemical parameter. Relationships between the overall and component reactions, as well as the macroscopic and microscopic rate constants are deduced. Experimental techniques, evaluation methods, and feasibility are discussed. Species-specific, pH-independent rate constants of four coexisting, differently hydrolyzing microspecies are determined for the first time. Protonation of an α-amino and β-imidazolyl site in amino acid esters has been found to accelerate the hydroxide-catalyzed hydrolysis by factors of 120 and 7.5, respectively, whereas they jointly exert a nearly 3000-fold acceleration. A total of 20 microscopic protonation equilibrium constants, as component parameters in the rate equations, have also been determined. The species-specific rate constants have been found to correlate with the site- and species-specific basicity of the leaving group and the NMR chemical shift of an adjacent proton. Individual contributions of the various microforms to the overall hydrolysis rate are depicted in microscopic reaction fraction diagrams.

Original languageEnglish
Pages (from-to)14507-14514
Number of pages8
JournalJournal of Physical Chemistry B
Issue number29
Publication statusPublished - Jul 27 2006

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Characterization of ester hydrolysis in terms of microscopic rate constants'. Together they form a unique fingerprint.

  • Cite this