Characterization of γ-aminobutyric acid-benzodiazepine receptor complexes by protection against inactivation by group-specific reagents

G. Maksay, M. K. Ticku

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

The chemical topography of the γ-aminobutyric acid (GABA) and benzodiazepine (BZ) receptors was investigated in a thoroughly washed cortical membrane preparation of the rat. Chemical modification by several amino- and tyrosyl-selective reagents and the protection from it by direct and allosteric ligands of the GABA-BZ receptor complex were used to identify the residues at the binding sites. Inhibition of specific GABA binding by p-diazobenzenesulfonic acid (DSA), tetranitromethane (TNM), and N-acetylimidazole and the selective and complete protection from it by GABA and muscimol suggest the presence of a tyrosine residue at the GABA(A) site. TNM, like DSA, selectively decreased the number of the low-affinity GABA receptors, and this could be completely protected only by GABA concentrations that can saturate the low-affinity sites. TNM pretreatment also abolished the muscimol enhancement of [3H]diazepam binding, which suggests that the low-affinity GABA receptor sites are responsible for this enhancement. Inhibition of GABA binding by pyridoxal-5-phosphate (PLP) and the selective protection by GABA and muscimol support the presence of a lysine residue at the GABA(A) receptor site. Complete and selective protection from diethylpyrocarbonate (DEP) inhibition of [3H]diazepam binding by flurazepam suggests the presence of a histidine residue at the BZ site. Flurazepam selectively protected from inhibition of [3H]diazepam binding by N-bromosuccinimide and N-acetylimidazole, but not that by DSA and TNM, which does not allow a unanimous conclusion regarding the presence of tyrosine or tryptophan residues at the BZ site.

Original languageEnglish
Pages (from-to)1715-1727
Number of pages13
JournalJournal of Neurochemistry
Volume42
Issue number6
Publication statusPublished - 1984

Fingerprint

Aminobutyrates
GABA-A Receptors
Tetranitromethane
gamma-Aminobutyric Acid
Muscimol
Diazepam
Flurazepam
GABA Receptors
Benzodiazepines
Tyrosine
Bromosuccinimide
Diethyl Pyrocarbonate
Pyridoxal Phosphate
Chemical modification
Histidine
Tryptophan
Topography
Lysine
Rats
Binding Sites

ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience

Cite this

@article{74bdbcf0814e4f1cb9d9a591263ae987,
title = "Characterization of γ-aminobutyric acid-benzodiazepine receptor complexes by protection against inactivation by group-specific reagents",
abstract = "The chemical topography of the γ-aminobutyric acid (GABA) and benzodiazepine (BZ) receptors was investigated in a thoroughly washed cortical membrane preparation of the rat. Chemical modification by several amino- and tyrosyl-selective reagents and the protection from it by direct and allosteric ligands of the GABA-BZ receptor complex were used to identify the residues at the binding sites. Inhibition of specific GABA binding by p-diazobenzenesulfonic acid (DSA), tetranitromethane (TNM), and N-acetylimidazole and the selective and complete protection from it by GABA and muscimol suggest the presence of a tyrosine residue at the GABA(A) site. TNM, like DSA, selectively decreased the number of the low-affinity GABA receptors, and this could be completely protected only by GABA concentrations that can saturate the low-affinity sites. TNM pretreatment also abolished the muscimol enhancement of [3H]diazepam binding, which suggests that the low-affinity GABA receptor sites are responsible for this enhancement. Inhibition of GABA binding by pyridoxal-5-phosphate (PLP) and the selective protection by GABA and muscimol support the presence of a lysine residue at the GABA(A) receptor site. Complete and selective protection from diethylpyrocarbonate (DEP) inhibition of [3H]diazepam binding by flurazepam suggests the presence of a histidine residue at the BZ site. Flurazepam selectively protected from inhibition of [3H]diazepam binding by N-bromosuccinimide and N-acetylimidazole, but not that by DSA and TNM, which does not allow a unanimous conclusion regarding the presence of tyrosine or tryptophan residues at the BZ site.",
author = "G. Maksay and Ticku, {M. K.}",
year = "1984",
language = "English",
volume = "42",
pages = "1715--1727",
journal = "Journal of Neurochemistry",
issn = "0022-3042",
publisher = "Wiley-Blackwell",
number = "6",

}

TY - JOUR

T1 - Characterization of γ-aminobutyric acid-benzodiazepine receptor complexes by protection against inactivation by group-specific reagents

AU - Maksay, G.

AU - Ticku, M. K.

PY - 1984

Y1 - 1984

N2 - The chemical topography of the γ-aminobutyric acid (GABA) and benzodiazepine (BZ) receptors was investigated in a thoroughly washed cortical membrane preparation of the rat. Chemical modification by several amino- and tyrosyl-selective reagents and the protection from it by direct and allosteric ligands of the GABA-BZ receptor complex were used to identify the residues at the binding sites. Inhibition of specific GABA binding by p-diazobenzenesulfonic acid (DSA), tetranitromethane (TNM), and N-acetylimidazole and the selective and complete protection from it by GABA and muscimol suggest the presence of a tyrosine residue at the GABA(A) site. TNM, like DSA, selectively decreased the number of the low-affinity GABA receptors, and this could be completely protected only by GABA concentrations that can saturate the low-affinity sites. TNM pretreatment also abolished the muscimol enhancement of [3H]diazepam binding, which suggests that the low-affinity GABA receptor sites are responsible for this enhancement. Inhibition of GABA binding by pyridoxal-5-phosphate (PLP) and the selective protection by GABA and muscimol support the presence of a lysine residue at the GABA(A) receptor site. Complete and selective protection from diethylpyrocarbonate (DEP) inhibition of [3H]diazepam binding by flurazepam suggests the presence of a histidine residue at the BZ site. Flurazepam selectively protected from inhibition of [3H]diazepam binding by N-bromosuccinimide and N-acetylimidazole, but not that by DSA and TNM, which does not allow a unanimous conclusion regarding the presence of tyrosine or tryptophan residues at the BZ site.

AB - The chemical topography of the γ-aminobutyric acid (GABA) and benzodiazepine (BZ) receptors was investigated in a thoroughly washed cortical membrane preparation of the rat. Chemical modification by several amino- and tyrosyl-selective reagents and the protection from it by direct and allosteric ligands of the GABA-BZ receptor complex were used to identify the residues at the binding sites. Inhibition of specific GABA binding by p-diazobenzenesulfonic acid (DSA), tetranitromethane (TNM), and N-acetylimidazole and the selective and complete protection from it by GABA and muscimol suggest the presence of a tyrosine residue at the GABA(A) site. TNM, like DSA, selectively decreased the number of the low-affinity GABA receptors, and this could be completely protected only by GABA concentrations that can saturate the low-affinity sites. TNM pretreatment also abolished the muscimol enhancement of [3H]diazepam binding, which suggests that the low-affinity GABA receptor sites are responsible for this enhancement. Inhibition of GABA binding by pyridoxal-5-phosphate (PLP) and the selective protection by GABA and muscimol support the presence of a lysine residue at the GABA(A) receptor site. Complete and selective protection from diethylpyrocarbonate (DEP) inhibition of [3H]diazepam binding by flurazepam suggests the presence of a histidine residue at the BZ site. Flurazepam selectively protected from inhibition of [3H]diazepam binding by N-bromosuccinimide and N-acetylimidazole, but not that by DSA and TNM, which does not allow a unanimous conclusion regarding the presence of tyrosine or tryptophan residues at the BZ site.

UR - http://www.scopus.com/inward/record.url?scp=0021255670&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0021255670&partnerID=8YFLogxK

M3 - Article

C2 - 6327911

AN - SCOPUS:0021255670

VL - 42

SP - 1715

EP - 1727

JO - Journal of Neurochemistry

JF - Journal of Neurochemistry

SN - 0022-3042

IS - 6

ER -