Changes in the Ca2+‐Transport Processes of Red Cells during Cold Storage in ACD

I. Szász, B. Sarkadi, G. Gárdos

Research output: Contribution to journalArticle

8 Citations (Scopus)


In order to characterize Ca2+‐transport in red cells stored in ACD Ca2+‐loading and Mg2+‐depletion by the ionophore A23187, CaATPase activity determination in intact cells and an accurate Ca2+‐influx technique were adapted to preserved blood. Active Ca2+‐efflux (pump) was measured in rejuvenated cells loaded by Ca2+ with A23187. The rate of Ca2+‐pump declined only slightly during 3 weeks of storage (from 80 ± 15 to 66 ± 17 μmoles Ca2+/l. cells/min) and a marginal trend of decrease in the Ca:ATP ratio was observed (from 1.96 ± 0.15 to 1.88±0.11). Passive Ca2+‐influx (leak) was studied in regenerated cells in which the Ca2+‐pump was blocked with 0.2 mm lanthanum. Ca2+‐influx showed a slow increase during the first 3 weeks of storage (from 0.4±0.16 to 1.25±0.4 μmoles Ca2+/l. cells/min), later it increased rapidly. Passive Ca2+ leak and exchange transport were studied in unregenerated, phosphate ester‐depleted cells. In this case passive Ca2+‐influx increased 2–3‐fold as early as 1–2 d after storage in ACD. This initial increase was followed by a continuous slow enhancement that reached a flux of 3.5±0.7 μmoles Ca2+/l. cells/min after 3 weeks of storage. The passive Ca2+‐permeability increase that occurred during storage could be readily compensated by the Ca2+‐pump without causing metabolic imbalance. The Ca2+‐transport, of unregenerated stored cells, however, showed impairment under certain conditions (A23187+EDTA and lanthanum treatments, ghost preparation). The Ca2+‐induced shape changes were reversible and ran parallel with the cell Ca2+ level during Ca2+‐pumping up to 5 weeks of storage. This finding indicates a direct relationship between cell Ca2+ and shape.

Original languageEnglish
Pages (from-to)559-568
Number of pages10
JournalBritish Journal of Haematology
Issue number4
Publication statusPublished - Aug 1978

ASJC Scopus subject areas

  • Hematology

Fingerprint Dive into the research topics of 'Changes in the Ca<sup>2+</sup>‐Transport Processes of Red Cells during Cold Storage in ACD'. Together they form a unique fingerprint.

  • Cite this