Cellular regulation of ADP-ribosylation of proteins. IV. Conversion of poly(ADP-ribose) polymerase activity to NAD-glycohydrolase during retinoic acid-induced differentiation of HL60 cells

Eva Kirsten, P. Bauer, Ernest Kun

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Two enzymatic activities of the nuclear enzyme poly(ADP-ribose) polymerase or transferase (ADPRT, EC 2.4.2.30), a DNA-associating abundant nuclear protein with multiple molecular activities, have been determined in HL60 cells prior to and after their exposure to 1 μM retinoic acid, which results in the induction of differentiation to mature granulocytes in 4-5 days. The cellular concentration of immunoreactive ADPRT protein molecules in differentiated granulocytes remained unchanged compared to that in HL60 cells prior to retinoic acid addition (3.17 ± 1.05 ng/105 cells), as did the apparent activity of poly(ADP-ribose) glycohydrolase of nuclei. On the other hand, the poly(ADP-ribose) synthesizing capacity of permeabilized cells or isolated nuclei decreased precipitously upon retinoic acid-induced differentiation, whereas the NAD glycohydrolase activity of nuclei significantly increased. The nuclear NAD glycohydrolase activity was identified as an ADPRT-catalyzed enzymatic activity by its unreactivity toward ethenoadenine NAD as a substrate added to nuclei or to purified ADPRT. During the decrease in in vitro poly(ADP-ribose) polymerase activity of nuclei following retinoic acid treatment, the quantity of endogenously poly(ADP-ribosylated) ADPRT significantly increased, as determined by chromatographic isolation of this modified protein by the boronate affinity technique, followed by gel electrophoresis and immunotransblot. When homogenous isolated ADPRT was first ADP-ribosylated in vitro, it lost its capacity to catalyze further polymer synthesis, whereas the NAD glycohydrolase function of the automodifled enzyme was greatly augmented. Since results of in vivo and in vitro experiments coincide, it appears that in retinoic acid-induced differentiated cells (granulocytes) the autopoly(ADP-ribosylated) ADPRT performs a predominantly, if not exclusively, NAD glycohydrolase function.

Original languageEnglish
Pages (from-to)1-8
Number of pages8
JournalExperimental Cell Research
Volume194
Issue number1
DOIs
Publication statusPublished - 1991

Fingerprint

NAD+ Nucleosidase
ADP Ribose Transferases
Poly(ADP-ribose) Polymerases
HL-60 Cells
Tretinoin
Adenosine Diphosphate
Granulocytes
Proteins
Poly Adenosine Diphosphate Ribose
Enzymes
Nuclear Proteins
NAD
Electrophoresis
Polymers
Gels
DNA

ASJC Scopus subject areas

  • Cell Biology

Cite this

@article{c3f7ed3f8dc240f4940fa644880a2d1e,
title = "Cellular regulation of ADP-ribosylation of proteins. IV. Conversion of poly(ADP-ribose) polymerase activity to NAD-glycohydrolase during retinoic acid-induced differentiation of HL60 cells",
abstract = "Two enzymatic activities of the nuclear enzyme poly(ADP-ribose) polymerase or transferase (ADPRT, EC 2.4.2.30), a DNA-associating abundant nuclear protein with multiple molecular activities, have been determined in HL60 cells prior to and after their exposure to 1 μM retinoic acid, which results in the induction of differentiation to mature granulocytes in 4-5 days. The cellular concentration of immunoreactive ADPRT protein molecules in differentiated granulocytes remained unchanged compared to that in HL60 cells prior to retinoic acid addition (3.17 ± 1.05 ng/105 cells), as did the apparent activity of poly(ADP-ribose) glycohydrolase of nuclei. On the other hand, the poly(ADP-ribose) synthesizing capacity of permeabilized cells or isolated nuclei decreased precipitously upon retinoic acid-induced differentiation, whereas the NAD glycohydrolase activity of nuclei significantly increased. The nuclear NAD glycohydrolase activity was identified as an ADPRT-catalyzed enzymatic activity by its unreactivity toward ethenoadenine NAD as a substrate added to nuclei or to purified ADPRT. During the decrease in in vitro poly(ADP-ribose) polymerase activity of nuclei following retinoic acid treatment, the quantity of endogenously poly(ADP-ribosylated) ADPRT significantly increased, as determined by chromatographic isolation of this modified protein by the boronate affinity technique, followed by gel electrophoresis and immunotransblot. When homogenous isolated ADPRT was first ADP-ribosylated in vitro, it lost its capacity to catalyze further polymer synthesis, whereas the NAD glycohydrolase function of the automodifled enzyme was greatly augmented. Since results of in vivo and in vitro experiments coincide, it appears that in retinoic acid-induced differentiated cells (granulocytes) the autopoly(ADP-ribosylated) ADPRT performs a predominantly, if not exclusively, NAD glycohydrolase function.",
author = "Eva Kirsten and P. Bauer and Ernest Kun",
year = "1991",
doi = "10.1016/0014-4827(91)90122-B",
language = "English",
volume = "194",
pages = "1--8",
journal = "Experimental Cell Research",
issn = "0014-4827",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Cellular regulation of ADP-ribosylation of proteins. IV. Conversion of poly(ADP-ribose) polymerase activity to NAD-glycohydrolase during retinoic acid-induced differentiation of HL60 cells

AU - Kirsten, Eva

AU - Bauer, P.

AU - Kun, Ernest

PY - 1991

Y1 - 1991

N2 - Two enzymatic activities of the nuclear enzyme poly(ADP-ribose) polymerase or transferase (ADPRT, EC 2.4.2.30), a DNA-associating abundant nuclear protein with multiple molecular activities, have been determined in HL60 cells prior to and after their exposure to 1 μM retinoic acid, which results in the induction of differentiation to mature granulocytes in 4-5 days. The cellular concentration of immunoreactive ADPRT protein molecules in differentiated granulocytes remained unchanged compared to that in HL60 cells prior to retinoic acid addition (3.17 ± 1.05 ng/105 cells), as did the apparent activity of poly(ADP-ribose) glycohydrolase of nuclei. On the other hand, the poly(ADP-ribose) synthesizing capacity of permeabilized cells or isolated nuclei decreased precipitously upon retinoic acid-induced differentiation, whereas the NAD glycohydrolase activity of nuclei significantly increased. The nuclear NAD glycohydrolase activity was identified as an ADPRT-catalyzed enzymatic activity by its unreactivity toward ethenoadenine NAD as a substrate added to nuclei or to purified ADPRT. During the decrease in in vitro poly(ADP-ribose) polymerase activity of nuclei following retinoic acid treatment, the quantity of endogenously poly(ADP-ribosylated) ADPRT significantly increased, as determined by chromatographic isolation of this modified protein by the boronate affinity technique, followed by gel electrophoresis and immunotransblot. When homogenous isolated ADPRT was first ADP-ribosylated in vitro, it lost its capacity to catalyze further polymer synthesis, whereas the NAD glycohydrolase function of the automodifled enzyme was greatly augmented. Since results of in vivo and in vitro experiments coincide, it appears that in retinoic acid-induced differentiated cells (granulocytes) the autopoly(ADP-ribosylated) ADPRT performs a predominantly, if not exclusively, NAD glycohydrolase function.

AB - Two enzymatic activities of the nuclear enzyme poly(ADP-ribose) polymerase or transferase (ADPRT, EC 2.4.2.30), a DNA-associating abundant nuclear protein with multiple molecular activities, have been determined in HL60 cells prior to and after their exposure to 1 μM retinoic acid, which results in the induction of differentiation to mature granulocytes in 4-5 days. The cellular concentration of immunoreactive ADPRT protein molecules in differentiated granulocytes remained unchanged compared to that in HL60 cells prior to retinoic acid addition (3.17 ± 1.05 ng/105 cells), as did the apparent activity of poly(ADP-ribose) glycohydrolase of nuclei. On the other hand, the poly(ADP-ribose) synthesizing capacity of permeabilized cells or isolated nuclei decreased precipitously upon retinoic acid-induced differentiation, whereas the NAD glycohydrolase activity of nuclei significantly increased. The nuclear NAD glycohydrolase activity was identified as an ADPRT-catalyzed enzymatic activity by its unreactivity toward ethenoadenine NAD as a substrate added to nuclei or to purified ADPRT. During the decrease in in vitro poly(ADP-ribose) polymerase activity of nuclei following retinoic acid treatment, the quantity of endogenously poly(ADP-ribosylated) ADPRT significantly increased, as determined by chromatographic isolation of this modified protein by the boronate affinity technique, followed by gel electrophoresis and immunotransblot. When homogenous isolated ADPRT was first ADP-ribosylated in vitro, it lost its capacity to catalyze further polymer synthesis, whereas the NAD glycohydrolase function of the automodifled enzyme was greatly augmented. Since results of in vivo and in vitro experiments coincide, it appears that in retinoic acid-induced differentiated cells (granulocytes) the autopoly(ADP-ribosylated) ADPRT performs a predominantly, if not exclusively, NAD glycohydrolase function.

UR - http://www.scopus.com/inward/record.url?scp=0026163159&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026163159&partnerID=8YFLogxK

U2 - 10.1016/0014-4827(91)90122-B

DO - 10.1016/0014-4827(91)90122-B

M3 - Article

C2 - 1849825

AN - SCOPUS:0026163159

VL - 194

SP - 1

EP - 8

JO - Experimental Cell Research

JF - Experimental Cell Research

SN - 0014-4827

IS - 1

ER -