Calculation of the thermodynamics of solvation of gaseous univalent ions in water from 273 to 573 K

Michael H. Abraham, Enrico Matteoli, János Liszi

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Values of ΔGs , ΔSs , and ΔCps for solution of gaseous univalent ions in water from 273 to 573 K have been calculated using Abraham and Liszi's method, in which a neutral term is obtained from data on rare gases and an electrostatic term is obtained using a solvation model in which an ion of radius a is surrounded by a solvent layer of thickness (b - a) and dielectric constant ε1. It is shown that when (b - a) is held constant for a given ion and when ε1 is obtained from ε1 = 1.87 at 298 K and ∂ε1/∂T = -1.6 × 10-3 K-1 there is good agreement between calculated quantities and those from Tremaine and Goldman at temperatures > ca. 423 K. There is similarly good agreement between ΔCps (calc.) and values from Cobble et al. for solution of (Na+ + Cl-) above 423 K. It is suggested that below this temperature there are effects due to the structure of water that cannot be calculated on an electrostatic theory. It is shown that whereas at 298 K ions may be structure making (Na+) or structure breaking (Cs+, Cl-, Br- and I-), at temperatures > ca. 400 K all the ions studied (Na+, K+, Rb+, Cs+, Cl-, Br- and I-) are structure making. The structure-making and -breaking effects of ions in water as deduced from entropies of solvation may quantitatively be connected with ionic viscosity B coefficients at all temperatures studied (273-423 K).

Original languageEnglish
Pages (from-to)2781-2800
Number of pages20
JournalJournal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases
Volume79
Issue number12
DOIs
Publication statusPublished - Jan 1 1983

ASJC Scopus subject areas

  • Chemistry(all)

Fingerprint Dive into the research topics of 'Calculation of the thermodynamics of solvation of gaseous univalent ions in water from 273 to 573 K'. Together they form a unique fingerprint.

  • Cite this