Brain structures mediating the suckling stimulus-induced release of prolactin

I. Bodnár, Z. S. Bánky, B. E. Tóth, G. M. Nagy, B. Halász

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Suckling-induced prolactin release is a widely studied neuroendocrine reflex, comprising a neural afferent and a humoral efferent component. The information on the brain structures involved in this reflex is fairly limited. The present studies focused on this question. The following hypothalamic interventions were made in lactating rats and the dams were tested for the suckling-induced prolactin response: (i) unilateral or (ii) bilateral frontal cuts at the level of the anterior and posterior hypothalamus; (iii) administration of 5,7-dihydroxytryptamine or (iv) 6-hydroxydopamine into the hypothalamic paraventricular nucleus (PVN) to destroy serotonergic and catecholaminergic innervation of the cell group, respectively; (v) lesion of the medial subdivision of the PVN; and (vi) horizontal knife cuts below the PVN. Bilateral posterior and bilateral or unilateral anterior frontal cuts caused blockade of the suckling-induced release of prolactin. Likewise, most dams receiving 5,7-dihydroxytryptamine in the PVN did not respond to the suckling stimulus. Immunocytochemistry revealed that, in those rats which did not show a rise in plasma prolactin, there were almost no serotonergic fibres and terminals in the PVN, while in dams which exhibited a response, numerous serotonergic elements were evident. 6-Hydroxydopamine treatment did not cause significant alteration in the prolactin response. Lesion of the medial, largely parvocellular subdivision of the PVN, or horizontal knife cuts below this cell group, blocked the hormone response. The findings demonstrate for the first time that: (i) interruption of the connections between the brain stem and the hypothalamus interferes with the prolactin response to the suckling stimulus; (ii) serotonergic fibres terminating in the hypothalamic PVN are involved in the mediation of the suckling stimulus; and (iii) within the PVN, neurones in the medial, largely parvocellular subdivision of the cell group take part in the transfer of the neural signal, eventually inducing prolactin release.

Original languageEnglish
Pages (from-to)384-396
Number of pages13
JournalJournal of Neuroendocrinology
Volume14
Issue number5
DOIs
Publication statusPublished - May 18 2002

    Fingerprint

Keywords

  • Hypothalamus
  • Paraventricular nucleus
  • Prolactin
  • Serotonin
  • Suckling

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Endocrinology
  • Endocrine and Autonomic Systems
  • Cellular and Molecular Neuroscience

Cite this