Biorelevant polyanions stabilize fibrin against mechanical and proteolytic decomposition: Effects of polymer size and electric charge

Erzsébet Komorowicz, Nóra Balázs, Anna Tanka-Salamon, Z. Varga, László Szabó, A. Bóta, Colin Longstaff, K. Kolev

Research output: Contribution to journalArticle

Abstract

The release of neutrophil extracellular traps (NETs) containing DNA and histones is an essential mechanism in the neutrophil-mediated innate immunity. In thrombi the polyanionic DNA confers mechanical and lytic resistance to fibrin and heparins interfere with the effects of NET components. Heparins are polyanions used not only as therapeutic agents, but they are also released by mast cells at entry sites of pathogens. Platelets and microorganisms release a different type of polyanions (polyphosphates) of various size (in the range 60–1000 phosphate monomers). With the current study we aimed to evaluate if the stability of fibrin is influenced by the type of polyanion, its molecular size or relative electric charge. Fibrin structure was approached with scanning electron microscopy (SEM) and pressure-driven permeation. An oscillation rheometer was used to investigate viscoelastic properties. Kinetic turbidimetric assays for the generation and dissolution of composite fibrin clots containing unfractionated heparin (UFH), and its partially or fully desulfated derivatives, as well as low molecular-weight heparin (LMWH), pentasaccharide (S5), and polyphosphates composed of 45 (P45), 100 (P100) or 700 (P700) monomers at average. The smaller polyanions P45, P100, LMWH, and S5 accelerated, whereas P700 and UFH retarded clot formation. All polyanions altered the fibrin structure: SEM and clot permeation showed thicker fibers with smaller (LMWH, S5, P700) or larger (UFH, P100) pores. All polyanions stabilized the clots mechanically, but the smaller P45, P100 and LMWH decreased the deformability of fibrin, whereas the large UFH and P700 increased the maximal bearable deformation of clots. Despite the size-dependent structural changes, all heparins caused a 10–15% prolongation of lysis-times with plasmin, and UFH-effects depended on sulfation patterns. The 20–35% prolongation of lysis-times caused by all polyphosphates was a kringle-dependent phenomenon, and was dampened in the presence of 6-aminohexanoate blocking the lysine-binding sites of plasmin. In summary, we found that polyanions of different chemical structure stabilize fibrin clots via size-dependent modulation of fibrin structure and kringle-dependent inhibition of plasmin-mediated fibrinolysis.

Original languageEnglish
Article number103459
JournalJournal of the Mechanical Behavior of Biomedical Materials
Volume102
DOIs
Publication statusPublished - Feb 1 2020

Fingerprint

Polyphosphates
Electric charge
Fibrinolysin
Viscoelasticity
Binding sites
Fibrin
Heparin
Amino acids
Polymers
Phosphates
Monomers
Binding Sites
Decomposition
Amino Acids
Scanning electron microscopy
Low Molecular Weight Heparin
Molecular weight
Permeation
Aminocaproates
polyanions

Keywords

  • Fibrin
  • Fibrinolysis
  • Heparin
  • Plasmin
  • Polyphosphate

ASJC Scopus subject areas

  • Biomaterials
  • Biomedical Engineering
  • Mechanics of Materials

Cite this

Biorelevant polyanions stabilize fibrin against mechanical and proteolytic decomposition : Effects of polymer size and electric charge. / Komorowicz, Erzsébet; Balázs, Nóra; Tanka-Salamon, Anna; Varga, Z.; Szabó, László; Bóta, A.; Longstaff, Colin; Kolev, K.

In: Journal of the Mechanical Behavior of Biomedical Materials, Vol. 102, 103459, 01.02.2020.

Research output: Contribution to journalArticle

@article{543d070600a84b61baf28505cfbd5ac1,
title = "Biorelevant polyanions stabilize fibrin against mechanical and proteolytic decomposition: Effects of polymer size and electric charge",
abstract = "The release of neutrophil extracellular traps (NETs) containing DNA and histones is an essential mechanism in the neutrophil-mediated innate immunity. In thrombi the polyanionic DNA confers mechanical and lytic resistance to fibrin and heparins interfere with the effects of NET components. Heparins are polyanions used not only as therapeutic agents, but they are also released by mast cells at entry sites of pathogens. Platelets and microorganisms release a different type of polyanions (polyphosphates) of various size (in the range 60–1000 phosphate monomers). With the current study we aimed to evaluate if the stability of fibrin is influenced by the type of polyanion, its molecular size or relative electric charge. Fibrin structure was approached with scanning electron microscopy (SEM) and pressure-driven permeation. An oscillation rheometer was used to investigate viscoelastic properties. Kinetic turbidimetric assays for the generation and dissolution of composite fibrin clots containing unfractionated heparin (UFH), and its partially or fully desulfated derivatives, as well as low molecular-weight heparin (LMWH), pentasaccharide (S5), and polyphosphates composed of 45 (P45), 100 (P100) or 700 (P700) monomers at average. The smaller polyanions P45, P100, LMWH, and S5 accelerated, whereas P700 and UFH retarded clot formation. All polyanions altered the fibrin structure: SEM and clot permeation showed thicker fibers with smaller (LMWH, S5, P700) or larger (UFH, P100) pores. All polyanions stabilized the clots mechanically, but the smaller P45, P100 and LMWH decreased the deformability of fibrin, whereas the large UFH and P700 increased the maximal bearable deformation of clots. Despite the size-dependent structural changes, all heparins caused a 10–15{\%} prolongation of lysis-times with plasmin, and UFH-effects depended on sulfation patterns. The 20–35{\%} prolongation of lysis-times caused by all polyphosphates was a kringle-dependent phenomenon, and was dampened in the presence of 6-aminohexanoate blocking the lysine-binding sites of plasmin. In summary, we found that polyanions of different chemical structure stabilize fibrin clots via size-dependent modulation of fibrin structure and kringle-dependent inhibition of plasmin-mediated fibrinolysis.",
keywords = "Fibrin, Fibrinolysis, Heparin, Plasmin, Polyphosphate",
author = "Erzs{\'e}bet Komorowicz and N{\'o}ra Bal{\'a}zs and Anna Tanka-Salamon and Z. Varga and L{\'a}szl{\'o} Szab{\'o} and A. B{\'o}ta and Colin Longstaff and K. Kolev",
year = "2020",
month = "2",
day = "1",
doi = "10.1016/j.jmbbm.2019.103459",
language = "English",
volume = "102",
journal = "Journal of the Mechanical Behavior of Biomedical Materials",
issn = "1751-6161",
publisher = "Elsevier BV",

}

TY - JOUR

T1 - Biorelevant polyanions stabilize fibrin against mechanical and proteolytic decomposition

T2 - Effects of polymer size and electric charge

AU - Komorowicz, Erzsébet

AU - Balázs, Nóra

AU - Tanka-Salamon, Anna

AU - Varga, Z.

AU - Szabó, László

AU - Bóta, A.

AU - Longstaff, Colin

AU - Kolev, K.

PY - 2020/2/1

Y1 - 2020/2/1

N2 - The release of neutrophil extracellular traps (NETs) containing DNA and histones is an essential mechanism in the neutrophil-mediated innate immunity. In thrombi the polyanionic DNA confers mechanical and lytic resistance to fibrin and heparins interfere with the effects of NET components. Heparins are polyanions used not only as therapeutic agents, but they are also released by mast cells at entry sites of pathogens. Platelets and microorganisms release a different type of polyanions (polyphosphates) of various size (in the range 60–1000 phosphate monomers). With the current study we aimed to evaluate if the stability of fibrin is influenced by the type of polyanion, its molecular size or relative electric charge. Fibrin structure was approached with scanning electron microscopy (SEM) and pressure-driven permeation. An oscillation rheometer was used to investigate viscoelastic properties. Kinetic turbidimetric assays for the generation and dissolution of composite fibrin clots containing unfractionated heparin (UFH), and its partially or fully desulfated derivatives, as well as low molecular-weight heparin (LMWH), pentasaccharide (S5), and polyphosphates composed of 45 (P45), 100 (P100) or 700 (P700) monomers at average. The smaller polyanions P45, P100, LMWH, and S5 accelerated, whereas P700 and UFH retarded clot formation. All polyanions altered the fibrin structure: SEM and clot permeation showed thicker fibers with smaller (LMWH, S5, P700) or larger (UFH, P100) pores. All polyanions stabilized the clots mechanically, but the smaller P45, P100 and LMWH decreased the deformability of fibrin, whereas the large UFH and P700 increased the maximal bearable deformation of clots. Despite the size-dependent structural changes, all heparins caused a 10–15% prolongation of lysis-times with plasmin, and UFH-effects depended on sulfation patterns. The 20–35% prolongation of lysis-times caused by all polyphosphates was a kringle-dependent phenomenon, and was dampened in the presence of 6-aminohexanoate blocking the lysine-binding sites of plasmin. In summary, we found that polyanions of different chemical structure stabilize fibrin clots via size-dependent modulation of fibrin structure and kringle-dependent inhibition of plasmin-mediated fibrinolysis.

AB - The release of neutrophil extracellular traps (NETs) containing DNA and histones is an essential mechanism in the neutrophil-mediated innate immunity. In thrombi the polyanionic DNA confers mechanical and lytic resistance to fibrin and heparins interfere with the effects of NET components. Heparins are polyanions used not only as therapeutic agents, but they are also released by mast cells at entry sites of pathogens. Platelets and microorganisms release a different type of polyanions (polyphosphates) of various size (in the range 60–1000 phosphate monomers). With the current study we aimed to evaluate if the stability of fibrin is influenced by the type of polyanion, its molecular size or relative electric charge. Fibrin structure was approached with scanning electron microscopy (SEM) and pressure-driven permeation. An oscillation rheometer was used to investigate viscoelastic properties. Kinetic turbidimetric assays for the generation and dissolution of composite fibrin clots containing unfractionated heparin (UFH), and its partially or fully desulfated derivatives, as well as low molecular-weight heparin (LMWH), pentasaccharide (S5), and polyphosphates composed of 45 (P45), 100 (P100) or 700 (P700) monomers at average. The smaller polyanions P45, P100, LMWH, and S5 accelerated, whereas P700 and UFH retarded clot formation. All polyanions altered the fibrin structure: SEM and clot permeation showed thicker fibers with smaller (LMWH, S5, P700) or larger (UFH, P100) pores. All polyanions stabilized the clots mechanically, but the smaller P45, P100 and LMWH decreased the deformability of fibrin, whereas the large UFH and P700 increased the maximal bearable deformation of clots. Despite the size-dependent structural changes, all heparins caused a 10–15% prolongation of lysis-times with plasmin, and UFH-effects depended on sulfation patterns. The 20–35% prolongation of lysis-times caused by all polyphosphates was a kringle-dependent phenomenon, and was dampened in the presence of 6-aminohexanoate blocking the lysine-binding sites of plasmin. In summary, we found that polyanions of different chemical structure stabilize fibrin clots via size-dependent modulation of fibrin structure and kringle-dependent inhibition of plasmin-mediated fibrinolysis.

KW - Fibrin

KW - Fibrinolysis

KW - Heparin

KW - Plasmin

KW - Polyphosphate

UR - http://www.scopus.com/inward/record.url?scp=85072863524&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072863524&partnerID=8YFLogxK

U2 - 10.1016/j.jmbbm.2019.103459

DO - 10.1016/j.jmbbm.2019.103459

M3 - Article

AN - SCOPUS:85072863524

VL - 102

JO - Journal of the Mechanical Behavior of Biomedical Materials

JF - Journal of the Mechanical Behavior of Biomedical Materials

SN - 1751-6161

M1 - 103459

ER -