Aureusvirus P14 is an efficient RNA silencing suppressor that binds double-stranded RNAs without size specificity

Zsuzsanna Mérai, Zoltán Kerényi, Attila Molnár, Endre Barta, Anna Válóczi, György Bisztray, Zoltán Havelda, József Burgyán, Dániel Silhavy

Research output: Contribution to journalArticle

94 Citations (Scopus)

Abstract

RNA silencing is a conserved eukaryotic gene regulatory system in which sequence specificity is determined by small RNAs. Plant RNA silencing also acts as an antiviral mechanism; therefore, viral infection requires expression of a silencing suppressor. The mechanism and the evolution of silencing suppression are still poorly understood. Tombusvirus open reading frame (ORF) 5-encoded P19 is a size-selective double-stranded RNA (dsRNA) binding protein that suppresses silencing by sequestering double-stranded small interfering RNAs (siRNAs), the specificity determinant of the antiviral silencing system. To better understand the evolution of silencing suppression, we characterized the suppressor of the type member of Aureusviruses, the closest relatives of the genus Tombusvirus. We show that the Pothos latent virus (PoLV) ORF 5-encoded P14 is an efficient suppressor of both virus- and transgene-induced silencing. Findings that in vitro P14 binds dsRNAs and double-stranded siRNAs without obvious size selection suggest that P14, unlike P19, can suppress silencing by sequestering both long dsRNA and double-stranded siRNA components of the silencing machinery. Indeed, P14 prevents the accumulation of hairpin transcript-derived siRNAs, indicating that P14 inhibits inverted repeat-induced silencing by binding the long dsRNA precursors of siRNAs. However, viral siRNAs accumulate to high levels in PoLV-infected plants; therefore, P14 might inhibit virus-induced silencing by sequestering double-stranded siRNAs. Finally, sequence analyses suggest that P14 and P19 suppressors diverged from an ancient dsRNA binding suppressor that evolved as a nested protein within the common ancestor of aureusvirus- tombusvirus movement proteins.

Original languageEnglish
Pages (from-to)7217-7226
Number of pages10
JournalJournal of Virology
Volume79
Issue number11
DOIs
Publication statusPublished - Jun 1 2005

    Fingerprint

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Cite this