Attosecond electronic and nuclear quantum photodynamics of ozone: Time-dependent Dyson orbitals and dipole

A. Perveaux, D. Lauvergnat, B. Lasorne, F. Gatti, M. A. Robb, G. J. Halász, A. Vibók

Research output: Contribution to journalArticle

11 Citations (Scopus)


A nonadiabatic scheme for the description of the coupled electron and nuclear motions in the ozone molecule was proposed recently (Halász etal 2013 Phys. Rev. A 88 023425). An initial coherent nonstationary state was prepared as a superposition of the ground state and the excited Hartley band. In this situation neither the electrons nor the nuclei are in a stationary state. The multiconfiguration time-dependent Hartree method was used to solve the coupled nuclear quantum dynamics in the framework of the adiabatic separation of the time-dependent Schrödinger equation. The resulting wave packet shows an oscillation of the electron density between the two chemical bonds. As a first step for probing the electronic motion we computed the time-dependent molecular dipole and the Dyson orbitals. The latter play an important role in the explanation of the photoelectron angular distribution. Calculations of the Dyson orbitals are presented both for the time-independent as well as the time-dependent situations. We limited our description of the electronic motion to the Franck-Condon region only due to the localization of the nuclear wave packets around this point during the first 5-6 fs.

Original languageEnglish
Article number124010
JournalJournal of Physics B: Atomic, Molecular and Optical Physics
Issue number12
Publication statusPublished - Jun 28 2014

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Attosecond electronic and nuclear quantum photodynamics of ozone: Time-dependent Dyson orbitals and dipole'. Together they form a unique fingerprint.

  • Cite this