Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland

F. Molnár, Harry Oduro, Nick D J Cook, Esa Pohjolainen, Ágnes Takács, Hugh O’Brien, Lassi Pakkanen, Bo Johanson, Richard Wirth

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

The Peräpohja Schist Belt comprises a supracrustal sequence of quartzites, mafic volcanics and volcaniclastics, carbonate rocks, black shales, mica schists and greywackes which were deposited from ca. 2.44 to ~1.91 Ga, during the rifting of the Archaean basement in the eastern part of the Fennoscandian shield. Metamorphism and multiple folding of the basin fill took place during the Svecofennian orogeny (1.9–1.8 Ga) followed by intrusions of late-orogenic (1.84–1.80 Ga) and post-orogenic granitoids (1.79–1.76 Ga). The Rompas Au-U mineralisation is hosted by deformed calcsilicate veins in mafic volcanic rocks and locally contains very high grade (>10,000 g/t Au) gold pockets with strict spatial association of gold minerals to uraninite and pyrobitumen. Chemical ages from the unaltered domains in the structure of uraninite indicate a 1.95–1.90 Ga age for the deposition of the primary, high temperature (e.g. U/Th <100 in uraninite) hydrothermal uranium mineralisation. These data are in agreement with the results of previous U-Pb dating of uraninite by SIMS. Textural evidence suggests that metamorphic recrystallisation of the uraninite-bearing quartz-dolomite veins into calcsilicate mineral assemblages during the Svecofennian orogeny (1.9–1.8 Ga) was followed by a hydrocarbon-bearing fluid flow event and radiolytic polymerisation of hydrocarbons around grains of uraninite. Gold precipitated during a subsequent hydrothermal process in the fractures of uraninite, as well as in the cracks and on the botryoidal surfaces of uraninite-pyrobitumen nodules. Remobilisation and redeposition of uranium by these hydrothermal events produced secondary uraninite grains with chemical ages between 1.85 and 1.65 Ga. Native gold is associated with galena, altaite, hunchunite, nickeline and rare cobaltite, Pb-bearing maldonite, pyrite, pyrrhotite, chalcopyrite, molybdenite and titanite. Raman spectra show disordered structure of undeformed pyrobitumen nodules in contrast with the well-ordered graphite in calcsilicate veins. Mean random reflectance data for pyrobitumen indicate 270–340 °C maximum temperature of thermal maturation—this temperature range is also considered as the temperature of gold deposition. Results of multiple sulphur isotope analyses of organic material-, pyrite- and acid-volatile-bound sulphur show distinct ranges of δ34S values for SORG and SCRS in uraninite-pyrobitumen (from −6.99 to −3.55‰ and from −10.02 to −4.41‰, respectively) and uraninite-pyrobitumen-native gold mineral associations (from +1.36 to +6.87‰ and from +0.42 to +9.7‰, respectively). Δ33S data indicate local occurrence of nonmass-dependent sulphur isotope fractionation owing to interaction of fluids with organic material. Concentration of lead in uraninite is depleted along the gold mineral filled fractures whereas the uranogenic lead isotope contents of galena, altaite and hunchuite deposited in the same fractures are extremely high, suggesting that the dominant source of lead for the crystallisation of these minerals was the radiogenic lead content of uraninite. Taking into account this source of radiogenic lead, the calculated Pb-Pb model ages for the lead minerals are between 1.75 and 1.70 Ga. Sulphur and tellurium removal from the fluid by reaction with radiogenic lead released by uraninite appears to be an important mechanism in the strongly localised deposition of gold minerals. Scavenging of sulphur by pyrobitumen nodules from gold transporting fluids was an additional process triggering precipitation of gold. Carbon particles and organic functional groups in pyrobitumen probably acted as nucleation and adsorption centres for gold minerals.

Original languageEnglish
Pages (from-to)1-22
Number of pages22
JournalMineralium Deposita
DOIs
Publication statusAccepted/In press - Jan 18 2016

Fingerprint

uraninite
Finland
metavolcanic rock
schist
Gold
gold
Rocks
rocks
mineralization
Minerals
minerals
Bearings (structural)
Sulfur Isotopes
nodules
mineral
veins
Sulfur
sulfur isotopes
Svecofennian orogeny
Uranium

Keywords

  • Depositional mechanism
  • Native gold
  • Paleoproterozoic basin
  • Pyrobitumen
  • Svecofennian orogeny
  • Uraninite

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Cite this

Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland. / Molnár, F.; Oduro, Harry; Cook, Nick D J; Pohjolainen, Esa; Takács, Ágnes; O’Brien, Hugh; Pakkanen, Lassi; Johanson, Bo; Wirth, Richard.

In: Mineralium Deposita, 18.01.2016, p. 1-22.

Research output: Contribution to journalArticle

Molnár, F. ; Oduro, Harry ; Cook, Nick D J ; Pohjolainen, Esa ; Takács, Ágnes ; O’Brien, Hugh ; Pakkanen, Lassi ; Johanson, Bo ; Wirth, Richard. / Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland. In: Mineralium Deposita. 2016 ; pp. 1-22.
@article{f5c58bec8fd7412590ca68db91e5dab9,
title = "Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Per{\"a}pohja Schist Belt, northern Finland",
abstract = "The Per{\"a}pohja Schist Belt comprises a supracrustal sequence of quartzites, mafic volcanics and volcaniclastics, carbonate rocks, black shales, mica schists and greywackes which were deposited from ca. 2.44 to ~1.91 Ga, during the rifting of the Archaean basement in the eastern part of the Fennoscandian shield. Metamorphism and multiple folding of the basin fill took place during the Svecofennian orogeny (1.9–1.8 Ga) followed by intrusions of late-orogenic (1.84–1.80 Ga) and post-orogenic granitoids (1.79–1.76 Ga). The Rompas Au-U mineralisation is hosted by deformed calcsilicate veins in mafic volcanic rocks and locally contains very high grade (>10,000 g/t Au) gold pockets with strict spatial association of gold minerals to uraninite and pyrobitumen. Chemical ages from the unaltered domains in the structure of uraninite indicate a 1.95–1.90 Ga age for the deposition of the primary, high temperature (e.g. U/Th <100 in uraninite) hydrothermal uranium mineralisation. These data are in agreement with the results of previous U-Pb dating of uraninite by SIMS. Textural evidence suggests that metamorphic recrystallisation of the uraninite-bearing quartz-dolomite veins into calcsilicate mineral assemblages during the Svecofennian orogeny (1.9–1.8 Ga) was followed by a hydrocarbon-bearing fluid flow event and radiolytic polymerisation of hydrocarbons around grains of uraninite. Gold precipitated during a subsequent hydrothermal process in the fractures of uraninite, as well as in the cracks and on the botryoidal surfaces of uraninite-pyrobitumen nodules. Remobilisation and redeposition of uranium by these hydrothermal events produced secondary uraninite grains with chemical ages between 1.85 and 1.65 Ga. Native gold is associated with galena, altaite, hunchunite, nickeline and rare cobaltite, Pb-bearing maldonite, pyrite, pyrrhotite, chalcopyrite, molybdenite and titanite. Raman spectra show disordered structure of undeformed pyrobitumen nodules in contrast with the well-ordered graphite in calcsilicate veins. Mean random reflectance data for pyrobitumen indicate 270–340 °C maximum temperature of thermal maturation—this temperature range is also considered as the temperature of gold deposition. Results of multiple sulphur isotope analyses of organic material-, pyrite- and acid-volatile-bound sulphur show distinct ranges of δ34S values for SORG and SCRS in uraninite-pyrobitumen (from −6.99 to −3.55‰ and from −10.02 to −4.41‰, respectively) and uraninite-pyrobitumen-native gold mineral associations (from +1.36 to +6.87‰ and from +0.42 to +9.7‰, respectively). Δ33S data indicate local occurrence of nonmass-dependent sulphur isotope fractionation owing to interaction of fluids with organic material. Concentration of lead in uraninite is depleted along the gold mineral filled fractures whereas the uranogenic lead isotope contents of galena, altaite and hunchuite deposited in the same fractures are extremely high, suggesting that the dominant source of lead for the crystallisation of these minerals was the radiogenic lead content of uraninite. Taking into account this source of radiogenic lead, the calculated Pb-Pb model ages for the lead minerals are between 1.75 and 1.70 Ga. Sulphur and tellurium removal from the fluid by reaction with radiogenic lead released by uraninite appears to be an important mechanism in the strongly localised deposition of gold minerals. Scavenging of sulphur by pyrobitumen nodules from gold transporting fluids was an additional process triggering precipitation of gold. Carbon particles and organic functional groups in pyrobitumen probably acted as nucleation and adsorption centres for gold minerals.",
keywords = "Depositional mechanism, Native gold, Paleoproterozoic basin, Pyrobitumen, Svecofennian orogeny, Uraninite",
author = "F. Moln{\'a}r and Harry Oduro and Cook, {Nick D J} and Esa Pohjolainen and {\'A}gnes Tak{\'a}cs and Hugh O’Brien and Lassi Pakkanen and Bo Johanson and Richard Wirth",
year = "2016",
month = "1",
day = "18",
doi = "10.1007/s00126-015-0636-6",
language = "English",
pages = "1--22",
journal = "Mineralium Deposita",
issn = "0026-4598",
publisher = "Springer Verlag",

}

TY - JOUR

T1 - Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland

AU - Molnár, F.

AU - Oduro, Harry

AU - Cook, Nick D J

AU - Pohjolainen, Esa

AU - Takács, Ágnes

AU - O’Brien, Hugh

AU - Pakkanen, Lassi

AU - Johanson, Bo

AU - Wirth, Richard

PY - 2016/1/18

Y1 - 2016/1/18

N2 - The Peräpohja Schist Belt comprises a supracrustal sequence of quartzites, mafic volcanics and volcaniclastics, carbonate rocks, black shales, mica schists and greywackes which were deposited from ca. 2.44 to ~1.91 Ga, during the rifting of the Archaean basement in the eastern part of the Fennoscandian shield. Metamorphism and multiple folding of the basin fill took place during the Svecofennian orogeny (1.9–1.8 Ga) followed by intrusions of late-orogenic (1.84–1.80 Ga) and post-orogenic granitoids (1.79–1.76 Ga). The Rompas Au-U mineralisation is hosted by deformed calcsilicate veins in mafic volcanic rocks and locally contains very high grade (>10,000 g/t Au) gold pockets with strict spatial association of gold minerals to uraninite and pyrobitumen. Chemical ages from the unaltered domains in the structure of uraninite indicate a 1.95–1.90 Ga age for the deposition of the primary, high temperature (e.g. U/Th <100 in uraninite) hydrothermal uranium mineralisation. These data are in agreement with the results of previous U-Pb dating of uraninite by SIMS. Textural evidence suggests that metamorphic recrystallisation of the uraninite-bearing quartz-dolomite veins into calcsilicate mineral assemblages during the Svecofennian orogeny (1.9–1.8 Ga) was followed by a hydrocarbon-bearing fluid flow event and radiolytic polymerisation of hydrocarbons around grains of uraninite. Gold precipitated during a subsequent hydrothermal process in the fractures of uraninite, as well as in the cracks and on the botryoidal surfaces of uraninite-pyrobitumen nodules. Remobilisation and redeposition of uranium by these hydrothermal events produced secondary uraninite grains with chemical ages between 1.85 and 1.65 Ga. Native gold is associated with galena, altaite, hunchunite, nickeline and rare cobaltite, Pb-bearing maldonite, pyrite, pyrrhotite, chalcopyrite, molybdenite and titanite. Raman spectra show disordered structure of undeformed pyrobitumen nodules in contrast with the well-ordered graphite in calcsilicate veins. Mean random reflectance data for pyrobitumen indicate 270–340 °C maximum temperature of thermal maturation—this temperature range is also considered as the temperature of gold deposition. Results of multiple sulphur isotope analyses of organic material-, pyrite- and acid-volatile-bound sulphur show distinct ranges of δ34S values for SORG and SCRS in uraninite-pyrobitumen (from −6.99 to −3.55‰ and from −10.02 to −4.41‰, respectively) and uraninite-pyrobitumen-native gold mineral associations (from +1.36 to +6.87‰ and from +0.42 to +9.7‰, respectively). Δ33S data indicate local occurrence of nonmass-dependent sulphur isotope fractionation owing to interaction of fluids with organic material. Concentration of lead in uraninite is depleted along the gold mineral filled fractures whereas the uranogenic lead isotope contents of galena, altaite and hunchuite deposited in the same fractures are extremely high, suggesting that the dominant source of lead for the crystallisation of these minerals was the radiogenic lead content of uraninite. Taking into account this source of radiogenic lead, the calculated Pb-Pb model ages for the lead minerals are between 1.75 and 1.70 Ga. Sulphur and tellurium removal from the fluid by reaction with radiogenic lead released by uraninite appears to be an important mechanism in the strongly localised deposition of gold minerals. Scavenging of sulphur by pyrobitumen nodules from gold transporting fluids was an additional process triggering precipitation of gold. Carbon particles and organic functional groups in pyrobitumen probably acted as nucleation and adsorption centres for gold minerals.

AB - The Peräpohja Schist Belt comprises a supracrustal sequence of quartzites, mafic volcanics and volcaniclastics, carbonate rocks, black shales, mica schists and greywackes which were deposited from ca. 2.44 to ~1.91 Ga, during the rifting of the Archaean basement in the eastern part of the Fennoscandian shield. Metamorphism and multiple folding of the basin fill took place during the Svecofennian orogeny (1.9–1.8 Ga) followed by intrusions of late-orogenic (1.84–1.80 Ga) and post-orogenic granitoids (1.79–1.76 Ga). The Rompas Au-U mineralisation is hosted by deformed calcsilicate veins in mafic volcanic rocks and locally contains very high grade (>10,000 g/t Au) gold pockets with strict spatial association of gold minerals to uraninite and pyrobitumen. Chemical ages from the unaltered domains in the structure of uraninite indicate a 1.95–1.90 Ga age for the deposition of the primary, high temperature (e.g. U/Th <100 in uraninite) hydrothermal uranium mineralisation. These data are in agreement with the results of previous U-Pb dating of uraninite by SIMS. Textural evidence suggests that metamorphic recrystallisation of the uraninite-bearing quartz-dolomite veins into calcsilicate mineral assemblages during the Svecofennian orogeny (1.9–1.8 Ga) was followed by a hydrocarbon-bearing fluid flow event and radiolytic polymerisation of hydrocarbons around grains of uraninite. Gold precipitated during a subsequent hydrothermal process in the fractures of uraninite, as well as in the cracks and on the botryoidal surfaces of uraninite-pyrobitumen nodules. Remobilisation and redeposition of uranium by these hydrothermal events produced secondary uraninite grains with chemical ages between 1.85 and 1.65 Ga. Native gold is associated with galena, altaite, hunchunite, nickeline and rare cobaltite, Pb-bearing maldonite, pyrite, pyrrhotite, chalcopyrite, molybdenite and titanite. Raman spectra show disordered structure of undeformed pyrobitumen nodules in contrast with the well-ordered graphite in calcsilicate veins. Mean random reflectance data for pyrobitumen indicate 270–340 °C maximum temperature of thermal maturation—this temperature range is also considered as the temperature of gold deposition. Results of multiple sulphur isotope analyses of organic material-, pyrite- and acid-volatile-bound sulphur show distinct ranges of δ34S values for SORG and SCRS in uraninite-pyrobitumen (from −6.99 to −3.55‰ and from −10.02 to −4.41‰, respectively) and uraninite-pyrobitumen-native gold mineral associations (from +1.36 to +6.87‰ and from +0.42 to +9.7‰, respectively). Δ33S data indicate local occurrence of nonmass-dependent sulphur isotope fractionation owing to interaction of fluids with organic material. Concentration of lead in uraninite is depleted along the gold mineral filled fractures whereas the uranogenic lead isotope contents of galena, altaite and hunchuite deposited in the same fractures are extremely high, suggesting that the dominant source of lead for the crystallisation of these minerals was the radiogenic lead content of uraninite. Taking into account this source of radiogenic lead, the calculated Pb-Pb model ages for the lead minerals are between 1.75 and 1.70 Ga. Sulphur and tellurium removal from the fluid by reaction with radiogenic lead released by uraninite appears to be an important mechanism in the strongly localised deposition of gold minerals. Scavenging of sulphur by pyrobitumen nodules from gold transporting fluids was an additional process triggering precipitation of gold. Carbon particles and organic functional groups in pyrobitumen probably acted as nucleation and adsorption centres for gold minerals.

KW - Depositional mechanism

KW - Native gold

KW - Paleoproterozoic basin

KW - Pyrobitumen

KW - Svecofennian orogeny

KW - Uraninite

UR - http://www.scopus.com/inward/record.url?scp=84961637011&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84961637011&partnerID=8YFLogxK

U2 - 10.1007/s00126-015-0636-6

DO - 10.1007/s00126-015-0636-6

M3 - Article

AN - SCOPUS:84961637011

SP - 1

EP - 22

JO - Mineralium Deposita

JF - Mineralium Deposita

SN - 0026-4598

ER -