Assignment of Vibrational Circular Dichroism Cross-Referenced Electronic Circular Dichroism Spectra of Flexible Foldamer Building Blocks: Towards Assigning Pure Chiroptical Properties of Foldamers

Viktor Farkas, Adrienn Nagy, Dóra K. Menyhárd, András Perczel

Research output: Contribution to journalArticle

Abstract

Assignment of the most established electronic circular dichroism (ECD) spectra of polypeptides and foldamers is either “evidence based” or relies on the 3D structures of longer oligomers of limited internal dynamics, which are derived from NMR spectroscopy (or X-ray) data. Critics warn that the use of NMR spectroscopy and ECD side by side has severe limitations for flexible molecules because explicit knowledge of conformational ensembles is a challenge. Herein, an old–new method of comparing ab initio computed and measured vibrational circular dichroism (VCD) data is presented to validate both the structures (conf(i)) and their relative weights (c(i)) that make up the conformational ensemble. Based on the array of {conf(i), c(i)}, the pure ECD spectra, g(i)conf(i), can be ab initio calculated. The reconstructed spectrum Σc(i)g(i)conf(i) can thus help to assign any experimental ECD counterparts. Herein, such a protocol is successfully applied to flexible foldamer building blocks of sugar β-amino acid diamides. The epimeric pair of the model system was selected because these molecules were conformationally tunable by simple chemical modification, and thus, the robustness of the current approach could be probed. The initial hydrogen bond (NH⋅⋅⋅O) eliminated by N-methylation reorients the amide plain, which influences the chiroptical properties of the foldamer building block; this structural change is successfully monitored by changes to the VCD and ECD transitions, which are now assigned to pure conformers. The current method seems to be general and effective without requiring extensive CPU and spectroscopic resources.

Original languageEnglish
JournalChemistry - A European Journal
DOIs
Publication statusAccepted/In press - Jan 1 2019

Fingerprint

Dichroism
Nuclear magnetic resonance spectroscopy
Diamide
Molecules
Methylation
Chemical modification
Oligomers
Amides
Sugars
Program processors
Hydrogen bonds
Network protocols
Amino Acids
X rays
Peptides
Polypeptides
Amino acids
Circular Dichroism

Keywords

  • amino acids
  • circular dichroism
  • conformation analysis
  • foldamers
  • secondary structure assignment

ASJC Scopus subject areas

  • Catalysis
  • Organic Chemistry

Cite this

@article{5012082da8494dce925a2369875afafc,
title = "Assignment of Vibrational Circular Dichroism Cross-Referenced Electronic Circular Dichroism Spectra of Flexible Foldamer Building Blocks: Towards Assigning Pure Chiroptical Properties of Foldamers",
abstract = "Assignment of the most established electronic circular dichroism (ECD) spectra of polypeptides and foldamers is either “evidence based” or relies on the 3D structures of longer oligomers of limited internal dynamics, which are derived from NMR spectroscopy (or X-ray) data. Critics warn that the use of NMR spectroscopy and ECD side by side has severe limitations for flexible molecules because explicit knowledge of conformational ensembles is a challenge. Herein, an old–new method of comparing ab initio computed and measured vibrational circular dichroism (VCD) data is presented to validate both the structures (conf(i)) and their relative weights (c(i)) that make up the conformational ensemble. Based on the array of {conf(i), c(i)}, the pure ECD spectra, g(i)conf(i), can be ab initio calculated. The reconstructed spectrum Σc(i)g(i)conf(i) can thus help to assign any experimental ECD counterparts. Herein, such a protocol is successfully applied to flexible foldamer building blocks of sugar β-amino acid diamides. The epimeric pair of the model system was selected because these molecules were conformationally tunable by simple chemical modification, and thus, the robustness of the current approach could be probed. The initial hydrogen bond (NH⋅⋅⋅O) eliminated by N-methylation reorients the amide plain, which influences the chiroptical properties of the foldamer building block; this structural change is successfully monitored by changes to the VCD and ECD transitions, which are now assigned to pure conformers. The current method seems to be general and effective without requiring extensive CPU and spectroscopic resources.",
keywords = "amino acids, circular dichroism, conformation analysis, foldamers, secondary structure assignment",
author = "Viktor Farkas and Adrienn Nagy and Menyh{\'a}rd, {D{\'o}ra K.} and Andr{\'a}s Perczel",
year = "2019",
month = "1",
day = "1",
doi = "10.1002/chem.201903023",
language = "English",
journal = "Chemistry - A European Journal",
issn = "0947-6539",
publisher = "Wiley-VCH Verlag",

}

TY - JOUR

T1 - Assignment of Vibrational Circular Dichroism Cross-Referenced Electronic Circular Dichroism Spectra of Flexible Foldamer Building Blocks

T2 - Towards Assigning Pure Chiroptical Properties of Foldamers

AU - Farkas, Viktor

AU - Nagy, Adrienn

AU - Menyhárd, Dóra K.

AU - Perczel, András

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Assignment of the most established electronic circular dichroism (ECD) spectra of polypeptides and foldamers is either “evidence based” or relies on the 3D structures of longer oligomers of limited internal dynamics, which are derived from NMR spectroscopy (or X-ray) data. Critics warn that the use of NMR spectroscopy and ECD side by side has severe limitations for flexible molecules because explicit knowledge of conformational ensembles is a challenge. Herein, an old–new method of comparing ab initio computed and measured vibrational circular dichroism (VCD) data is presented to validate both the structures (conf(i)) and their relative weights (c(i)) that make up the conformational ensemble. Based on the array of {conf(i), c(i)}, the pure ECD spectra, g(i)conf(i), can be ab initio calculated. The reconstructed spectrum Σc(i)g(i)conf(i) can thus help to assign any experimental ECD counterparts. Herein, such a protocol is successfully applied to flexible foldamer building blocks of sugar β-amino acid diamides. The epimeric pair of the model system was selected because these molecules were conformationally tunable by simple chemical modification, and thus, the robustness of the current approach could be probed. The initial hydrogen bond (NH⋅⋅⋅O) eliminated by N-methylation reorients the amide plain, which influences the chiroptical properties of the foldamer building block; this structural change is successfully monitored by changes to the VCD and ECD transitions, which are now assigned to pure conformers. The current method seems to be general and effective without requiring extensive CPU and spectroscopic resources.

AB - Assignment of the most established electronic circular dichroism (ECD) spectra of polypeptides and foldamers is either “evidence based” or relies on the 3D structures of longer oligomers of limited internal dynamics, which are derived from NMR spectroscopy (or X-ray) data. Critics warn that the use of NMR spectroscopy and ECD side by side has severe limitations for flexible molecules because explicit knowledge of conformational ensembles is a challenge. Herein, an old–new method of comparing ab initio computed and measured vibrational circular dichroism (VCD) data is presented to validate both the structures (conf(i)) and their relative weights (c(i)) that make up the conformational ensemble. Based on the array of {conf(i), c(i)}, the pure ECD spectra, g(i)conf(i), can be ab initio calculated. The reconstructed spectrum Σc(i)g(i)conf(i) can thus help to assign any experimental ECD counterparts. Herein, such a protocol is successfully applied to flexible foldamer building blocks of sugar β-amino acid diamides. The epimeric pair of the model system was selected because these molecules were conformationally tunable by simple chemical modification, and thus, the robustness of the current approach could be probed. The initial hydrogen bond (NH⋅⋅⋅O) eliminated by N-methylation reorients the amide plain, which influences the chiroptical properties of the foldamer building block; this structural change is successfully monitored by changes to the VCD and ECD transitions, which are now assigned to pure conformers. The current method seems to be general and effective without requiring extensive CPU and spectroscopic resources.

KW - amino acids

KW - circular dichroism

KW - conformation analysis

KW - foldamers

KW - secondary structure assignment

UR - http://www.scopus.com/inward/record.url?scp=85074613237&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85074613237&partnerID=8YFLogxK

U2 - 10.1002/chem.201903023

DO - 10.1002/chem.201903023

M3 - Article

AN - SCOPUS:85074613237

JO - Chemistry - A European Journal

JF - Chemistry - A European Journal

SN - 0947-6539

ER -