Ascorbate as a substrate for glycolysis or gluconeogenesis. evidence for an interorgan ascorbate cycle

G. Banheavi, L. Braun, F. Puskâs, M. Csala, J. Mandl

Research output: Contribution to journalArticle

Abstract

Ascorbate catabolism was investigated in murine and human cells unable to synthesize ascorbate due to the missing gulonolactone oxidase activity. In HepG2 cells the addition of ascorbate or dehydroascorbate resulted in high glucose production, while human erythrocytes, MCF7 cells and the cellular elements of the murine blood were able to metabolize ascorbate or dehydroascorbate to lactate. The oxidative agent menadione stimulated, while the transketolase inhibitor oxythiamine inhibited the metabolism of dehydroascorbate in each of these three cell types. Our results suggest that ascorbate breakdown through the pentose phosphate pathway can reach the glycolytic/gluconeogenic route in different cells. In ascorbate synthesizing species the ascorbate-1 a date route in peripheral cells may form a catabolic branch of an interorgan ascorbate cycle, where hepatocytes are responsible for ascorbate synthesis. The catabolic part of this cycle using exogenous ascorbate could be demonstrated even in humans cells.

Original languageEnglish
Pages (from-to)A1412
JournalFASEB Journal
Volume11
Issue number9
Publication statusPublished - Dec 1 1997

ASJC Scopus subject areas

  • Biotechnology
  • Biochemistry
  • Molecular Biology
  • Genetics

Fingerprint Dive into the research topics of 'Ascorbate as a substrate for glycolysis or gluconeogenesis. evidence for an interorgan ascorbate cycle'. Together they form a unique fingerprint.

  • Cite this