Antihydrogen production and precision experiments. The ATHENA collaboration

M. H. Holzscheiter, G. Bendiscioli, A. Bertin, G. Bollen, M. Bruschi, C. Cesar, M. Charlton, M. Corradini, D. DePedis, M. Doser, J. Eades, R. Fedele, X. Feng, F. Galluccio, T. Goldman, J. S. Hangst, R. Hayano, D. Horváth, R. J. Hughes, N. S P KingK. Kirsebom, H. Knudsen, V. Lagomarsino, R. Landua, G. Laricchia, R. A. Lewis, E. Lodi-Rizzini, M. Macri, G. Manuzio, U. Marconi, M. R. Masullo, J. P. Merrison, S. P. Møller, G. L. Morgan, M. M. Nieto, M. Piccinini, R. Poggiani, A. Rotondi, G. Rouleau, P. Salvini, N. Semprini-Cesari, G. A. Smith, C. M. Surko, G. Testera, G. Torelli, E. Uggerhøj, V. G. Vaccaro, L. Venturelli, A. Vitale, E. Widmann, T. Yamazaki, Y. Yamazaki, D. Zanello, A. Zoccoli

Research output: Contribution to journalArticle

Abstract

The study of CPT invariance with the highest achievable precision in all particle sectors is of fundamental importance for physics. Equally important is the question of the gravitational acceleration of antimatter. In recent years, impressive progress has been achieved at the Low Energy Antiproton Ring (LEAR) at CERN in capturing antiprotons in specially designed Penning traps, in cooling them to energies of a few milli-electron volts, and in storing them for hours in a small volume of space. Positrons have been accumulated in large numbers in similar traps, and low energy positron or positronium beams have been generated. Finally, steady progress has been made in trapping and cooling neutral atoms. Thus the ingredients to form antihydrogen at rest are at hand. We propose to investigate the different methods to form antihydrogen at low energy, and to utilize the best of these methods to capture a number of antihydrogen atoms sufficient for spectroscopic studies in a magnetostatic trap. Once antihydrogen atoms have been captured at low energy, spectroscopic methods can be applied to interrogate their atomic structure with extremely high precision and compare it to its normal matter counterpart, the hydrogen atom. Especially the 1S-2S transition, with a lifetime of the excited state of 122 ms and thereby a natural linewidth of 5 parts in 1016, offers in principle the possibility to directly compare matter and antimatter properties at a level of 1 part in 1018. Additionally, comparison of the gravitational masses of hydrogen and antihydrogen, using either ballistic or spectroscopic methods, can provide direct experimental tests of the Weak Equivalence Principle for antimatter at a high precision.

Original languageEnglish
JournalHyperfine Interactions
Volume109
Issue number1-4
DOIs
Publication statusPublished - Aug 28 1997

Fingerprint

antimatter
Atoms
Positrons
traps
Hydrogen
antiprotons
Experiments
positrons
Cooling
Magnetostatics
energy
cooling
Electron transitions
Ballistics
Invariance
Excited states
Linewidth
positronium
magnetostatics
neutral atoms

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Nuclear and High Energy Physics
  • Atomic and Molecular Physics, and Optics
  • Physical and Theoretical Chemistry

Cite this

Holzscheiter, M. H., Bendiscioli, G., Bertin, A., Bollen, G., Bruschi, M., Cesar, C., ... Zoccoli, A. (1997). Antihydrogen production and precision experiments. The ATHENA collaboration. Hyperfine Interactions, 109(1-4). https://doi.org/10.1023/A:1012628711418

Antihydrogen production and precision experiments. The ATHENA collaboration. / Holzscheiter, M. H.; Bendiscioli, G.; Bertin, A.; Bollen, G.; Bruschi, M.; Cesar, C.; Charlton, M.; Corradini, M.; DePedis, D.; Doser, M.; Eades, J.; Fedele, R.; Feng, X.; Galluccio, F.; Goldman, T.; Hangst, J. S.; Hayano, R.; Horváth, D.; Hughes, R. J.; King, N. S P; Kirsebom, K.; Knudsen, H.; Lagomarsino, V.; Landua, R.; Laricchia, G.; Lewis, R. A.; Lodi-Rizzini, E.; Macri, M.; Manuzio, G.; Marconi, U.; Masullo, M. R.; Merrison, J. P.; Møller, S. P.; Morgan, G. L.; Nieto, M. M.; Piccinini, M.; Poggiani, R.; Rotondi, A.; Rouleau, G.; Salvini, P.; Semprini-Cesari, N.; Smith, G. A.; Surko, C. M.; Testera, G.; Torelli, G.; Uggerhøj, E.; Vaccaro, V. G.; Venturelli, L.; Vitale, A.; Widmann, E.; Yamazaki, T.; Yamazaki, Y.; Zanello, D.; Zoccoli, A.

In: Hyperfine Interactions, Vol. 109, No. 1-4, 28.08.1997.

Research output: Contribution to journalArticle

Holzscheiter, MH, Bendiscioli, G, Bertin, A, Bollen, G, Bruschi, M, Cesar, C, Charlton, M, Corradini, M, DePedis, D, Doser, M, Eades, J, Fedele, R, Feng, X, Galluccio, F, Goldman, T, Hangst, JS, Hayano, R, Horváth, D, Hughes, RJ, King, NSP, Kirsebom, K, Knudsen, H, Lagomarsino, V, Landua, R, Laricchia, G, Lewis, RA, Lodi-Rizzini, E, Macri, M, Manuzio, G, Marconi, U, Masullo, MR, Merrison, JP, Møller, SP, Morgan, GL, Nieto, MM, Piccinini, M, Poggiani, R, Rotondi, A, Rouleau, G, Salvini, P, Semprini-Cesari, N, Smith, GA, Surko, CM, Testera, G, Torelli, G, Uggerhøj, E, Vaccaro, VG, Venturelli, L, Vitale, A, Widmann, E, Yamazaki, T, Yamazaki, Y, Zanello, D & Zoccoli, A 1997, 'Antihydrogen production and precision experiments. The ATHENA collaboration', Hyperfine Interactions, vol. 109, no. 1-4. https://doi.org/10.1023/A:1012628711418
Holzscheiter MH, Bendiscioli G, Bertin A, Bollen G, Bruschi M, Cesar C et al. Antihydrogen production and precision experiments. The ATHENA collaboration. Hyperfine Interactions. 1997 Aug 28;109(1-4). https://doi.org/10.1023/A:1012628711418
Holzscheiter, M. H. ; Bendiscioli, G. ; Bertin, A. ; Bollen, G. ; Bruschi, M. ; Cesar, C. ; Charlton, M. ; Corradini, M. ; DePedis, D. ; Doser, M. ; Eades, J. ; Fedele, R. ; Feng, X. ; Galluccio, F. ; Goldman, T. ; Hangst, J. S. ; Hayano, R. ; Horváth, D. ; Hughes, R. J. ; King, N. S P ; Kirsebom, K. ; Knudsen, H. ; Lagomarsino, V. ; Landua, R. ; Laricchia, G. ; Lewis, R. A. ; Lodi-Rizzini, E. ; Macri, M. ; Manuzio, G. ; Marconi, U. ; Masullo, M. R. ; Merrison, J. P. ; Møller, S. P. ; Morgan, G. L. ; Nieto, M. M. ; Piccinini, M. ; Poggiani, R. ; Rotondi, A. ; Rouleau, G. ; Salvini, P. ; Semprini-Cesari, N. ; Smith, G. A. ; Surko, C. M. ; Testera, G. ; Torelli, G. ; Uggerhøj, E. ; Vaccaro, V. G. ; Venturelli, L. ; Vitale, A. ; Widmann, E. ; Yamazaki, T. ; Yamazaki, Y. ; Zanello, D. ; Zoccoli, A. / Antihydrogen production and precision experiments. The ATHENA collaboration. In: Hyperfine Interactions. 1997 ; Vol. 109, No. 1-4.
@article{9987eb623b034451a0b0d9c7611f68d9,
title = "Antihydrogen production and precision experiments. The ATHENA collaboration",
abstract = "The study of CPT invariance with the highest achievable precision in all particle sectors is of fundamental importance for physics. Equally important is the question of the gravitational acceleration of antimatter. In recent years, impressive progress has been achieved at the Low Energy Antiproton Ring (LEAR) at CERN in capturing antiprotons in specially designed Penning traps, in cooling them to energies of a few milli-electron volts, and in storing them for hours in a small volume of space. Positrons have been accumulated in large numbers in similar traps, and low energy positron or positronium beams have been generated. Finally, steady progress has been made in trapping and cooling neutral atoms. Thus the ingredients to form antihydrogen at rest are at hand. We propose to investigate the different methods to form antihydrogen at low energy, and to utilize the best of these methods to capture a number of antihydrogen atoms sufficient for spectroscopic studies in a magnetostatic trap. Once antihydrogen atoms have been captured at low energy, spectroscopic methods can be applied to interrogate their atomic structure with extremely high precision and compare it to its normal matter counterpart, the hydrogen atom. Especially the 1S-2S transition, with a lifetime of the excited state of 122 ms and thereby a natural linewidth of 5 parts in 1016, offers in principle the possibility to directly compare matter and antimatter properties at a level of 1 part in 1018. Additionally, comparison of the gravitational masses of hydrogen and antihydrogen, using either ballistic or spectroscopic methods, can provide direct experimental tests of the Weak Equivalence Principle for antimatter at a high precision.",
author = "Holzscheiter, {M. H.} and G. Bendiscioli and A. Bertin and G. Bollen and M. Bruschi and C. Cesar and M. Charlton and M. Corradini and D. DePedis and M. Doser and J. Eades and R. Fedele and X. Feng and F. Galluccio and T. Goldman and Hangst, {J. S.} and R. Hayano and D. Horv{\'a}th and Hughes, {R. J.} and King, {N. S P} and K. Kirsebom and H. Knudsen and V. Lagomarsino and R. Landua and G. Laricchia and Lewis, {R. A.} and E. Lodi-Rizzini and M. Macri and G. Manuzio and U. Marconi and Masullo, {M. R.} and Merrison, {J. P.} and M{\o}ller, {S. P.} and Morgan, {G. L.} and Nieto, {M. M.} and M. Piccinini and R. Poggiani and A. Rotondi and G. Rouleau and P. Salvini and N. Semprini-Cesari and Smith, {G. A.} and Surko, {C. M.} and G. Testera and G. Torelli and E. Uggerh{\o}j and Vaccaro, {V. G.} and L. Venturelli and A. Vitale and E. Widmann and T. Yamazaki and Y. Yamazaki and D. Zanello and A. Zoccoli",
year = "1997",
month = "8",
day = "28",
doi = "10.1023/A:1012628711418",
language = "English",
volume = "109",
journal = "Hyperfine Interaction",
issn = "0304-3843",
publisher = "Springer Netherlands",
number = "1-4",

}

TY - JOUR

T1 - Antihydrogen production and precision experiments. The ATHENA collaboration

AU - Holzscheiter, M. H.

AU - Bendiscioli, G.

AU - Bertin, A.

AU - Bollen, G.

AU - Bruschi, M.

AU - Cesar, C.

AU - Charlton, M.

AU - Corradini, M.

AU - DePedis, D.

AU - Doser, M.

AU - Eades, J.

AU - Fedele, R.

AU - Feng, X.

AU - Galluccio, F.

AU - Goldman, T.

AU - Hangst, J. S.

AU - Hayano, R.

AU - Horváth, D.

AU - Hughes, R. J.

AU - King, N. S P

AU - Kirsebom, K.

AU - Knudsen, H.

AU - Lagomarsino, V.

AU - Landua, R.

AU - Laricchia, G.

AU - Lewis, R. A.

AU - Lodi-Rizzini, E.

AU - Macri, M.

AU - Manuzio, G.

AU - Marconi, U.

AU - Masullo, M. R.

AU - Merrison, J. P.

AU - Møller, S. P.

AU - Morgan, G. L.

AU - Nieto, M. M.

AU - Piccinini, M.

AU - Poggiani, R.

AU - Rotondi, A.

AU - Rouleau, G.

AU - Salvini, P.

AU - Semprini-Cesari, N.

AU - Smith, G. A.

AU - Surko, C. M.

AU - Testera, G.

AU - Torelli, G.

AU - Uggerhøj, E.

AU - Vaccaro, V. G.

AU - Venturelli, L.

AU - Vitale, A.

AU - Widmann, E.

AU - Yamazaki, T.

AU - Yamazaki, Y.

AU - Zanello, D.

AU - Zoccoli, A.

PY - 1997/8/28

Y1 - 1997/8/28

N2 - The study of CPT invariance with the highest achievable precision in all particle sectors is of fundamental importance for physics. Equally important is the question of the gravitational acceleration of antimatter. In recent years, impressive progress has been achieved at the Low Energy Antiproton Ring (LEAR) at CERN in capturing antiprotons in specially designed Penning traps, in cooling them to energies of a few milli-electron volts, and in storing them for hours in a small volume of space. Positrons have been accumulated in large numbers in similar traps, and low energy positron or positronium beams have been generated. Finally, steady progress has been made in trapping and cooling neutral atoms. Thus the ingredients to form antihydrogen at rest are at hand. We propose to investigate the different methods to form antihydrogen at low energy, and to utilize the best of these methods to capture a number of antihydrogen atoms sufficient for spectroscopic studies in a magnetostatic trap. Once antihydrogen atoms have been captured at low energy, spectroscopic methods can be applied to interrogate their atomic structure with extremely high precision and compare it to its normal matter counterpart, the hydrogen atom. Especially the 1S-2S transition, with a lifetime of the excited state of 122 ms and thereby a natural linewidth of 5 parts in 1016, offers in principle the possibility to directly compare matter and antimatter properties at a level of 1 part in 1018. Additionally, comparison of the gravitational masses of hydrogen and antihydrogen, using either ballistic or spectroscopic methods, can provide direct experimental tests of the Weak Equivalence Principle for antimatter at a high precision.

AB - The study of CPT invariance with the highest achievable precision in all particle sectors is of fundamental importance for physics. Equally important is the question of the gravitational acceleration of antimatter. In recent years, impressive progress has been achieved at the Low Energy Antiproton Ring (LEAR) at CERN in capturing antiprotons in specially designed Penning traps, in cooling them to energies of a few milli-electron volts, and in storing them for hours in a small volume of space. Positrons have been accumulated in large numbers in similar traps, and low energy positron or positronium beams have been generated. Finally, steady progress has been made in trapping and cooling neutral atoms. Thus the ingredients to form antihydrogen at rest are at hand. We propose to investigate the different methods to form antihydrogen at low energy, and to utilize the best of these methods to capture a number of antihydrogen atoms sufficient for spectroscopic studies in a magnetostatic trap. Once antihydrogen atoms have been captured at low energy, spectroscopic methods can be applied to interrogate their atomic structure with extremely high precision and compare it to its normal matter counterpart, the hydrogen atom. Especially the 1S-2S transition, with a lifetime of the excited state of 122 ms and thereby a natural linewidth of 5 parts in 1016, offers in principle the possibility to directly compare matter and antimatter properties at a level of 1 part in 1018. Additionally, comparison of the gravitational masses of hydrogen and antihydrogen, using either ballistic or spectroscopic methods, can provide direct experimental tests of the Weak Equivalence Principle for antimatter at a high precision.

UR - http://www.scopus.com/inward/record.url?scp=84938394285&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84938394285&partnerID=8YFLogxK

U2 - 10.1023/A:1012628711418

DO - 10.1023/A:1012628711418

M3 - Article

AN - SCOPUS:84938394285

VL - 109

JO - Hyperfine Interaction

JF - Hyperfine Interaction

SN - 0304-3843

IS - 1-4

ER -