Analysis of cell surface molecular distributions and cellular signaling by flow cytometry

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Flow cytometry is a fast analysis and separation method for large cell populations, based on collection and processing of optical signals gained on a cell-by-cell basis. These optical signals are scattered light and fluorescence. Owing to its unique potential of Statistical data analysis and sensitive monitoring of (micro)heterogeneities in large cell populations, flow cytometry-in combination with microscopic imaging techniques-is a powerful tool to study molecular details of cellular signal transduction processes as well. The method also has a widespread clinical application, mostly in analysis of lymphocyte subpopulations for diagnostic (or research) purposes in diseases related to the immune system. A special application of flow cytometry is the mapping of molecular interactions (proximity relationships between membrane proteins) at the cell surface, on a cell-by-cell basis. We developed two approaches to study such questions; both are based on distance-dependent quenching of excited state fluorophores (donors) by fluorescent or dark (nitroxide radical) acceptors via Förstertype dipole-dipole resonance energy transfer (FRET) and long-range electron transfer (LRET) mechanisms, respectively. A critical evaluation of these methods using donor- or acceptor-conjugated monoclonal antibodies (or their Fab fragments) to select the appropriate cell surface receptor or antigen will be presented in comparison with other approaches for similar purposes. The applicability of FRET and LRET for two-dimensional antigen mapping as well as for detection of conformational changes in extracellular domains of membrane-bound proteins is discussed and illustrated by examples of several lymphoma cell lines. Another special application area of flow cytometry is the analysis of different aspects of cellular signal transduction, e.g., changes of intracellular ion (Ca2+, H+, Na+) concentrations, regulation of ion channel activities, or more complex physiological responses of cell to external stimuli via correlated fluorescence and scatter signal analysis, on a cell-by-cell basis. This way different signaling events such as changes in membrane permeability, membrane potential, cell size and shape, ion distribution, cell density, chromatin structure, etc., can be easily and quickly monitored over large cell populations with the advantage of revealing microheterogeneities in the cellular responses. Flow cytometry also offers the possibility to follow the kinetics of slow (minute- and hour-scale) biological processes in cell populations. These applications are illustrated by the example of complex flow cytometric analysis of signaling in extracellular ATP-triggered apoptosis (programmed cell death) of murine thymic lymphocytes.

Original languageEnglish
Pages (from-to)303-314
Number of pages12
JournalJournal of Fluorescence
Volume4
Issue number4
DOIs
Publication statusPublished - Dec 1 1994

Keywords

  • Fluorescence
  • cell surface
  • electron transfer
  • energy transfer
  • flow cytometry
  • protein association
  • signal transduction

ASJC Scopus subject areas

  • Biochemistry
  • Clinical Psychology
  • Social Sciences (miscellaneous)
  • Sociology and Political Science
  • Spectroscopy
  • Clinical Biochemistry
  • Law

Fingerprint Dive into the research topics of 'Analysis of cell surface molecular distributions and cellular signaling by flow cytometry'. Together they form a unique fingerprint.

  • Cite this