### Abstract

Let ex(n,K_{3,3}) denote the maximum number of edges of a K_{3,3}-free graph on n vertices. Improving earlier results of Kovári, T. Sós and Turán on Zarankiewicz' problem, we obtain that Brown's example for a maximal K_{3,3}-free graph is asymptotically optimal. Hence ex(n,K_{3,3}) ∼ 1/2 n^{5/3}.

Original language | English |
---|---|

Pages (from-to) | 29-33 |

Number of pages | 5 |

Journal | Combinatorics Probability and Computing |

Volume | 5 |

Issue number | 1 |

Publication status | Published - 1996 |

### Fingerprint

### ASJC Scopus subject areas

- Computational Theory and Mathematics
- Mathematics(all)
- Discrete Mathematics and Combinatorics
- Statistics and Probability
- Theoretical Computer Science

### Cite this

*Combinatorics Probability and Computing*,

*5*(1), 29-33.

**An upper bound on Zarankiewicz' problem.** / Füredi, Z.

Research output: Contribution to journal › Article

*Combinatorics Probability and Computing*, vol. 5, no. 1, pp. 29-33.

}

TY - JOUR

T1 - An upper bound on Zarankiewicz' problem

AU - Füredi, Z.

PY - 1996

Y1 - 1996

N2 - Let ex(n,K3,3) denote the maximum number of edges of a K3,3-free graph on n vertices. Improving earlier results of Kovári, T. Sós and Turán on Zarankiewicz' problem, we obtain that Brown's example for a maximal K3,3-free graph is asymptotically optimal. Hence ex(n,K3,3) ∼ 1/2 n5/3.

AB - Let ex(n,K3,3) denote the maximum number of edges of a K3,3-free graph on n vertices. Improving earlier results of Kovári, T. Sós and Turán on Zarankiewicz' problem, we obtain that Brown's example for a maximal K3,3-free graph is asymptotically optimal. Hence ex(n,K3,3) ∼ 1/2 n5/3.

UR - http://www.scopus.com/inward/record.url?scp=0030537409&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030537409&partnerID=8YFLogxK

M3 - Article

VL - 5

SP - 29

EP - 33

JO - Combinatorics Probability and Computing

JF - Combinatorics Probability and Computing

SN - 0963-5483

IS - 1

ER -