### Abstract

It is a classical unsolved problem whether there is a polynomial with integral coefficients whose values at natural numbers form a Sidon set. In this note we prove the existence of a polynomial of degree 5, with real coefficients, such that the integer parts of the values form a Sidon set.

Original language | English |
---|---|

Pages (from-to) | 367-375 |

Number of pages | 9 |

Journal | Studia Scientiarum Mathematicarum Hungarica |

Volume | 38 |

Issue number | 1-4 |

Publication status | Published - Dec 1 2002 |

### Keywords

- Random construction
- Sidon sets

### ASJC Scopus subject areas

- Mathematics(all)

## Fingerprint Dive into the research topics of 'An almost polynomial sidon sequence'. Together they form a unique fingerprint.

## Cite this

Ruzsa, I. Z. (2002). An almost polynomial sidon sequence.

*Studia Scientiarum Mathematicarum Hungarica*,*38*(1-4), 367-375.