Alon's Nullstellensatz for multisets

Géza Kós, Lajos Rónyai

Research output: Contribution to journalArticle

5 Citations (Scopus)


Alon's combinatorial Nullstellensatz (Theorem 1.1 from [2]) is one of the most powerful algebraic tools in combinatorics, with a diverse array of applications. Let F be a field, S1, S2,...,Sn be finite nonempty subsets of F. Alon's theorem is a specialized, precise version of the Hilbertsche Nullstellensatz for the ideal of all polynomial functions vanishing on the set S = S1×S××...Sn⊆Fn. From this Alon deduces a simple and amazingly widely applicable nonvanishing criterion (Theorem 1.2 in [2]). It provides a sufficient condition for a polynomial f(x1,...,xn) which guarantees that f is not identically zero on the set S. In this paper we extend these two results from sets of points to multisets. We give two different proofs of the generalized nonvanishing theorem. We extend some of the known applications of the original nonvanishing theorem to a setting allowing multiplicities, including the theorem of Alon and Füredi on the hyperplane coverings of discrete cubes.

Original languageEnglish
Pages (from-to)589-605
Number of pages17
Issue number5
Publication statusPublished - Oct 5 2012

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Computational Mathematics

Fingerprint Dive into the research topics of 'Alon's Nullstellensatz for multisets'. Together they form a unique fingerprint.

  • Cite this