All‐pair wave function and reduced variational equation for electronic systems

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

A new type of wave function is proposed for atomic and molecular systems. This all‐pair function is constructed of N(N – 1)/2 identical geminals for N electrons. For systems with the highest multiplicity this is the full space part of the wave function. For closed shell systems it has to be multiplied by a Slater determinant according to the antisymmetry condition. In the case of maximal multiplicity a reduced variational equation is derived for the geminal. This equation is independent of the dimensionality of the system and contains the particle number as a multiplicative factor only. The method is extended to the closed shell case where a restriction has to be fulfilled. The reduction of the variational equation can be done only approximately. The use of identical geminals can be treated as a first approximation. An extension of the method, called the pair interdependent configuration interaction (PICI), is proposed. The special features of the method are discussed briefly.

Original languageEnglish
Pages (from-to)9-21
Number of pages13
JournalInternational Journal of Quantum Chemistry
Volume9
Issue number1
DOIs
Publication statusPublished - 1975

Fingerprint

Wave functions
wave functions
electronics
antisymmetry
N electrons
determinants
configuration interaction
Electrons
constrictions
approximation

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry

Cite this

@article{e4f4b114ecfc4aafb2c9260c7706e7b1,
title = "All‐pair wave function and reduced variational equation for electronic systems",
abstract = "A new type of wave function is proposed for atomic and molecular systems. This all‐pair function is constructed of N(N – 1)/2 identical geminals for N electrons. For systems with the highest multiplicity this is the full space part of the wave function. For closed shell systems it has to be multiplied by a Slater determinant according to the antisymmetry condition. In the case of maximal multiplicity a reduced variational equation is derived for the geminal. This equation is independent of the dimensionality of the system and contains the particle number as a multiplicative factor only. The method is extended to the closed shell case where a restriction has to be fulfilled. The reduction of the variational equation can be done only approximately. The use of identical geminals can be treated as a first approximation. An extension of the method, called the pair interdependent configuration interaction (PICI), is proposed. The special features of the method are discussed briefly.",
author = "G. N{\'a}ray-Szab{\'o}",
year = "1975",
doi = "10.1002/qua.560090103",
language = "English",
volume = "9",
pages = "9--21",
journal = "International Journal of Quantum Chemistry",
issn = "0020-7608",
publisher = "John Wiley and Sons Inc.",
number = "1",

}

TY - JOUR

T1 - All‐pair wave function and reduced variational equation for electronic systems

AU - Náray-Szabó, G.

PY - 1975

Y1 - 1975

N2 - A new type of wave function is proposed for atomic and molecular systems. This all‐pair function is constructed of N(N – 1)/2 identical geminals for N electrons. For systems with the highest multiplicity this is the full space part of the wave function. For closed shell systems it has to be multiplied by a Slater determinant according to the antisymmetry condition. In the case of maximal multiplicity a reduced variational equation is derived for the geminal. This equation is independent of the dimensionality of the system and contains the particle number as a multiplicative factor only. The method is extended to the closed shell case where a restriction has to be fulfilled. The reduction of the variational equation can be done only approximately. The use of identical geminals can be treated as a first approximation. An extension of the method, called the pair interdependent configuration interaction (PICI), is proposed. The special features of the method are discussed briefly.

AB - A new type of wave function is proposed for atomic and molecular systems. This all‐pair function is constructed of N(N – 1)/2 identical geminals for N electrons. For systems with the highest multiplicity this is the full space part of the wave function. For closed shell systems it has to be multiplied by a Slater determinant according to the antisymmetry condition. In the case of maximal multiplicity a reduced variational equation is derived for the geminal. This equation is independent of the dimensionality of the system and contains the particle number as a multiplicative factor only. The method is extended to the closed shell case where a restriction has to be fulfilled. The reduction of the variational equation can be done only approximately. The use of identical geminals can be treated as a first approximation. An extension of the method, called the pair interdependent configuration interaction (PICI), is proposed. The special features of the method are discussed briefly.

UR - http://www.scopus.com/inward/record.url?scp=84871803877&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84871803877&partnerID=8YFLogxK

U2 - 10.1002/qua.560090103

DO - 10.1002/qua.560090103

M3 - Article

VL - 9

SP - 9

EP - 21

JO - International Journal of Quantum Chemistry

JF - International Journal of Quantum Chemistry

SN - 0020-7608

IS - 1

ER -